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WELCOME TO GEOENV2010 ! 

 
On behalf of the geoENV2010 Organising Committee and the geoENVIA patronising 

organisation we are pleased to welcome you at the 8th International Conference on Geostatistics 

for Environmental Applications in Gent, Belgium.  

 

GeoENV conferences have been held biennially at venues across Europe. From the first 

conference in Lisbon in 1996, the event has been in Valencia (1998), Avignon (2000), Barcelona 

(2002), Neuchâtel (2004), Rhodes (2006) and Southampton (2008). It has become a leading 

forum for Scientists across a broad range of disciplines to share their experiences on the 

application of geostatistics to environmental problems. 

 

This book contains the extended abstracts of the oral and poster contributions to the 

geoENV2010 conference. They have been selected, but not edited, by the organising committee. 

So the presented abstracts are included as they have been submitted by the authors. Papers are 

included in the order in which they appear in the programme. 

 

In the past, each geoENV conference produced a book of full papers, creating a prestigious and 

authorative series of geostatistical literature. In this conference it was decided to bundle the full 

papers after review in a special issue of an international journal. The choice fell on the Springer 

journal Stochastic Environmental Research and Risk Assessment (SERRA). Authors who have 

presented their work at the conference are invited to submit a paper to the geoENV2010 

organising committee who will then proceed with the reviewing process and make 

recommendations to the editor of SERRA. Every participant of geoENV2010 will receive a copy 

of this special issue. 

 

Other differences with previous geoENV conferences are the omission of parallel sessions which 

is possible because we reduced the time per contribution. In this way all participants can attend 

all talks, but talks will have to be more concise. Ample time is foreseen for a poster session with 

poster authors presenting their work in front of a group of delegates. 

 

Many persons, mainly from the research group Soil Spatial Inventory Techniques of the 

Department of Soil Management of the Faculty of Bio-Science Engineering, UGent, have 

contributed to the organisation of this conference. One person in particular, Dr. Liesbet Cockx, is 

thanked for taking most of the load on her shoulders and for preparing this book of abstracts. 

 

We hope that this issue in the series of geoENV conferences will be equally fruitful and 

rewarding to its participants and the readers of this book and the special issue of SERRA. 

 

Marc Van Meirvenne, Patrick Bogaert and Dimitri D’Or 

Chair of the Organising Committee of GeoENV2010  



With financial support from: 
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SPATIAL MODELING WITH ENSEMBLES IN METRIC SPACE 

 

C. Scheidt and J. Caers 

Stanford University 

 

State-of-the-art 

The construction of earth models using geostatistical estimation and simulation methods is now 

routinely applied in areas such as reservoir modeling, aquifer modeling or mineral deposit 

estimation. These models can be constrained to a variety of data (seismic data, dynamic data, 

well logs, etc.).   Due to the sophistication of modern geomodeling software, very complex Earth 

models containing complex surfaces describing layering and faults, reservoir structure, spatial 

variation of petrophysical properties, etc., can be constructed in a relatively straightforward 

manner.  Increasing complexity, however desirable for accurate modeling, results in potentially 

hundreds to millions of different model parameters to describe the earth phenomenon of interest.  

The complexity and high-dimensionality of these models necessitate the construction of multiple 

model realizations (ensembles) to perform properly a study.   

On the other hand, the goal of modeling studies is rarely the construction of the models 

themselves, but rather to respond to often basic engineering questions - do we clean-up or not, do 

we drill, what are oil and gas reserves, should we obtain more data, etc.  In these and many other 

applications, the question to be answered is much less complex than the Earth models that are 

constructed.  Our task then is to analyze multiple, complex, high-dimensional Earth models to 

answer often very simple questions.   Analyzing ensembles of Earth models requires a response 

evaluation for each model in the ensemble (Monte-Carlo approach).  This is generally infeasible, 

mostly due to the large number of uncertain parameters involved in Earth modeling. This is 

especially the case when the response function is CPU demanding, for example in cases where 

finite element or finite difference solutions are required (multiphase flow simulations, climate 

models).   

What is missing in the modeling process is a link between the construction of the Earth models 

and the purpose of the study.  Currently, models are considered simply as input to a transfer 

function, and are built with little regard to the type of response or decision variable considered.  

This no doubt has an impact on the efficiency and effectiveness of the studies we undertake.   

 

Metric space 

To overcome the disconnection between large-scale, 3D spatial Earth modeling and the actual 

purpose for which these models are constructed, we propose to introduce a metric space.  This 

metric space is defined using a dissimilarity distance function between models.  The distance is 

tailored to the application at hand - it should be chosen such that it correlates with the difference 

in response of interest between any two models.  The dissimilarity distance function therefore 

relates the modeling process to the purpose of the modeling, and provides the key missing link 
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between model uncertainty, and uncertainty in the model responses (oil recovery, climate 

change, ground water recharge efficiency).  If this distance is chosen with respect to the purpose 

of the modeling effort, then we can show how large complexity and dimensionality in Earth 

models can be significantly reduced in the metric space defined by this distance (Figure 1).  

Data and
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Figure 1: Schematic diagram of modeling process and link with fit-for-purpose modeling using 

metric spaces. 

 

In this presentation, we will show that many of the current Cartesian-based modeling problems 

and methodologies, such as inverse modeling, model selection and screening, model updating 

and response uncertainty evaluation can be redefined in metric space. We demonstrate how such 

a redefinition greatly simplifies as well as increases effectiveness and efficiency of any modeling 

effort, particularly those that require addressing the matter of model and response uncertainty. 

In particular, we will illustrate that such distance allows to: 

1. Map complex high-dimensional models (model space) into a lower dimensional metric 

space (response-dependant) using a statistical tool called multi-dimensional scaling 

(MDS).   

2. Incorporate the purpose of the application into the modeling effort.  

3. Focus on the ensemble of earth models and not on one model at a time 

We will lay out the basic theory behind modeling with ensemble of models in metric space. We 

will illustrate the simplicity and power of this novel theory by various practical applications on 

large dataset, including: 
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1. How to assess response uncertainty when the forward model is CPU demanding.  Model 

selection can be done efficiently in the metric space in order to identify a few 

representative models for which response evaluation is performed. 

2. How an ensemble of models can be parameterized with a few standard Gaussian 

variables through a distance-based Karhuenen-Loeve expansion (KLE).  Such 

parameterization is response-dependant and therefore can be useful in solving 

optimization problems under uncertainty. 

3. How an ensemble of models can be updated by using a modified version of the Ensemble 

Kalman Filtering technique in the metric space.   

4. How a multi-resolution framework can be employed within distance-based techniques to 

circumvent CPU-intensive transfer functions.  Distances can be computed from 

coarsened models while constructing equivalent fine-scale models. 

These applications are possible whenever an effective distance between models can be 

determined.    Indeed, we expect many more applications to come to light in this new, rich field 

of modeling of ensembles in metric space. 
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THE DIRECT SAMPLING METHOD TO PERFORM MULTIVARIATE MULTIPLE-

POINTS GEOSTATISTICAL SIMULATIONS 

 

G. Mariethoz
1,2
, P. Renard

1
, J. Straubhaar

1
 

 
1Centre for Hydrogeology, University of Neuchâtel, 11 Rue Emile Argand, CP 158, CH-2000 

Neuchâtel, Switzerland, E-mail: gregoire.mariethoz@minds.ch 
2Stanford University, ERE Department, 367 Panama st, rm 65, Stanford, CA 94305, USA. 

 

Recent advances in the domain of geostatistical simulations include multiple-points simulation 

methods (MPS), which infer spatial structures from conceptual example images, namely training 

images. Their main advantage is to allow using high-order spatial statistics (as opposed to 

traditional two-point statistics), that can represent a wide range of spatially structured, low 

entropy phenomena. 

We present a novel MPS algorithm, named direct sampling (DS), which is drastically simplified 

compared to previous approaches and has more possibilities (Mariethoz and Renard, in press; 

Mariethoz, et al., submitted). It produces conditional realizations honoring the high-order 

statistics of uni- or multivariate training images. In addition to having virtually no RAM 

requirement, the method is straightforward to parallelize (Mariethoz, in press). Hence it is 

computationally efficient and can produce very large and complex realizations. 

With the traditional MPS approaches (e.g. Strebelle, 2002; Zhang, et al., 2006; Straubhaar, et al., 

2008), the training image is usually scanned and all pixels configurations of a certain size (the 

template size) are stored in a catalogue of data events having a tree or a list structure. This 

structure is then used to compute the conditional probabilities at each simulated node. Since the 

memory load increases dramatically with the size of the template and the number of facies, the 

use of MPS is generally restricted to relatively small problems with limited structural 

complexity. Moreover, the template is often not large enough to capture large-scale structures, 

and multi-grids have been introduced to palliate this problem by simulating the large-scale 

structures first, and later the small-scale features. Limited memory usage restricts the approach to 

the simulation of univariate fields. 

The DS algorithm takes a different approach. Instead of counting and storing the configurations 

found in the training image, it directly samples the training image for a given data event. The 

method is based on a sampling method introduced by Shannon (1948), strictly equivalent to the 

original MPS algorithm of Guardiano and Srivastava (1993), but that does not explicitly need to 

compute conditional probabilities and therefore does not need to store them. Starting from an 

initial randomly located point, the training image is scanned. For each of the successive samples, 

the distance between the data event observed in the simulation and the one sampled from the 

training image is calculated. If the distance is lower than a given threshold, the sampling process 

is stopped and the value at the central node of the data event in the training image is directly used 
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for the simulation. Since nothing is stored, neighborhoods can have virtually any size and are not 

restricted to a template, making the use of multiple-grids unnecessary. In fact, multiple-grids are 

replaced by a continuous variation in the size of data events during the simulation process. This 

reduces artifacts and leads to a simpler implementation. 

Similarly to other methods, DS can reproduce the structures of complex training images and deal 

with a wide range of non-stationary problems. Additionally, it can simulate both discrete and 

continuous variables by choosing specific distances between data events, and can deal with 

specific cases of non-stationarity. But the richest feature of DS is that multivariate data 

configurations can be considered, allowing to generate realizations presenting a given 

multivariate multiple-point dependence. The ability to treat multiple variables simultaneously in 

a multiple-point framework allows co-simulation without formulating the dependency between 

the simulated attributes. Instead, the multiple-point dependence is reproduced as it is in the 

multivariate training image. 

 
Figure 1: Multivariate training image and one corresponding multivariate simulation 

 

An example is shown in figure 1. The left images represent a bivariate training image consisting 

of the photograph of an outcrop and a georadar image taken at the same location (Bayer, 

unpublished). The dependence between both variables is shown by the double-headed arrow. 

One bivariate realization is displayed on the right. Note that the top right image is not an actual 

photograph, but a simulation of what the photograph could be. Similarly, the bottom right image 

is a simulation of a georadar image. The dependence between variables is preserved (double-

headed arrow), since the simulated photograph of the outcrop presents interfaces at locations that 

are coherent with the interfaces in the simulated georadar image. 
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SIMULATING COMPLEX 3D ALLUVIAL STRATIGRAPHY BY COMBINING 

TRAINING- IMAGE-BASED ALGORITHMS AND VERTICAL VARIOGRAMS 

 

A. Boucher
1
, G.Phelps

2
, C. Cronkite-Ratcliff

3
 

 
1Dept of Environmental Earth System Science, Stanford University, CA, USA, 

aboucher@stanford.edu 
2U.S. Geological Survey 345 Middlefield Road, MS 989 Menlo Park, CA,  

3Dept of Geological and Environmental Sciences, Stanford University, CA, USA,  

 

Alluvial and volcanic basin deposits, prevalent throughout the southwestern United States, can 

be important groundwater repositories, and the deposit stratigraphy significantly affects 

groundwater storage, recharge and withdrawal. Mapping alluvial deposits in the subsurface is 

central to quantifying the availability and modeling the use of this critical resource. However, 

alluvial units observed at the surface are difficult to model within the subsurface because of their 

complex sedimentological structure. New tools are needed to map alluvium in the subsurface in 

order to improve models of soil moisture and groundwater recharge, flow, and transport, which 

in turn improve the understanding of available water resources.  

Training image-based algorithms have been shown to offer great potential to both map and 

characterize the uncertainty associated with mapping subsurface contacts with complex 

connectivity. However, finding suitable 3D training images remains one of the main challenges 

for training image-based algorithms such as the SNESIM algorithm (Strebelle, 2002). 

Information for mapping 3D alluvial units is often available only in 2D or 1D, and creating 

explicit 3D training images may not be feasible or desirable. Moreover, training image 

requirements for standard simulation algorithms are restrictive (no trends or location specific 

features); consequently, images of natural systems are abandoned in favor of simplistic training 

images often generated by Boolean techniques. Furthermore, natural sedimentation processes 

and rates are known to change over time, creating sedimentological pattern trends within a basin 

that are not captured by simple vertically varying facies proportions. 

These issues are addressed by using widely available geological maps as training images and a 

structured simulation path to mimic the sedimentary environments through time and space. 

Nonstationary 3D geomorphic patterns are simulated by coupling several 2D geological maps 

with experimental 1D vertical variograms; the geological maps are selected to model changes in 

sedimentation regime over time. These methods are demonstrated in Yucca Flat, Nevada, a 

nuclear test site where radionuclide migration is a concern for groundwater north of the Las 

Vegas, NV metropolitan area. 

Two different training images, selected to represent different depositional regimes, are used as to 

mimic the length, sinuosity, and adjacency of geologic unit deposition that has occurred in Yucca 

Flat since the Pliocene. The first training image is the USGS quaternary geologic map of Yucca 

                                                             7



            

Flat basin (Slate and others, 2000). It identifies patterns occurring in a hydrological regime 

where the sedimentation rate is low, as it is today (Figure 1 left). The second training image 

(Figure 1 right; D.M. Miller, USGS, written communication), close to Valjean, CA, in the Death 

Valley regional basin south of Yucca Flat, models a hydrological regime with an inferred higher 

sedimentation rate. Both training images are derived directly from observed geologic 

environments and therefore preserve the natural geologic shape, continuity, and stratigraphic 

relations. These complex training images are decomposed with the search tree partitioning 

approach (Boucher, 2008), where topographic variables, such as gradient, distance to source, and 

elevation from source, serve as a proxy for the sedimentary processes. 
 

 
Figure 1: Training image from the (Left) surface geology of the Yucca Flat (25km x 35 km) and 

(Right) the Valjean area in the Death Valley Basin (21.4km x 17.3km). 

 

Simulations are performed layer-by-layer, starting at depth and moving upwards. Each 2D layer 

is simulated by applying one of the two training images, using the search-tree partitioning 

method. For each layer a stochastic process determines the sedimentation rate by using one of the 

two training images. Contact boundaries are modeled vertically using indicator variograms 

inferred from borehole data and horizontally from a 2D training image. Future improvements to 

the method could seek to include conditioning the depositional rate to paleoclimate data. 

The resulting 3D realizations (Figure 2) (a) are conditioned to borehole data, (b) visually appear 

to reproduce sedimentary structures, and (c) include variable sedimentation rates through time. 

The reproduction of the vertical variograms for the three most important sedimentary units is 

shown in Figure 3; the reproductions are good, but tend to under-estimate the short-scale, 

withinunit continuity. 
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Figure 2: Four simulations of the Yucca Flat: Dimension 20km by 12 km by 800 meters. See 

Figure 1 for the legend 

 

  
Figure 3: Vertical variogram reproduction; (LEFT) Quaternary and Tertiary; (MIDDLE) 

Pleistocene; (RIGHT) Holocene 
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Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, 

Nevada and Inyo County, California, Revision 4: U.S. Geological Survey, Open- File Report 99-

554-A, http://pubs.usgs.gov/of/1999/ofr-99-0554, 1999 
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LIST�BASED ALGORITHM FORMULTIPLE�POINT STATISTICS SIMULATIONJulien Straubhaar1,5, Philippe Renard1, Grégoire Mariethoz2, Roland Froidevaux3, andOlivier Besson41Centre of Hydrogeology and Geothermis (CHYN), University of Neuhâtel, rueEmile�Argand 11, CH�2009 Neuhâtel, Switzerland2University of Neuhâtel; now at ERE Department, Stanford University, 367 Panama st,rm 65, Stanford, CA 94305, USA3Ephesia Consult SA, 9, rue Boissonnas, CH�1227 Geneva, Switzerland4Institute of Mathematis, University of Neuhâtel, rue Emile�Argand 11, CH�2009Neuhâtel, Switzerland5E-mail: julien.straubhaar�unine.h, Phone: +41 32 718 26 10August 16, 20101 IntrodutionFlow and transport proesses are highly sensitive to the shape of the strutures and their onnetivity(Journel and Zhang 2006; Renard 2007). Hene, modeling realisti heterogeneous geologial reservoirs is aruial issue. Multiple�point statistis is a �exible tehnique for simulating ategorial variables, allowingto generate omplex geologial strutures provided by the user via a training image (TI) (Guardiano andStrivastava 1993). In lassial implementations, the multiple�point statistis inferred from the trainingimage are stored in a searh tree (Strebelle 2002). This provides a fast but very RAM demandingalgorithm. Indeed, in partiular for 3D ases, the searh templates used for retrieving the statistishave to be small enough, beause of the RAM limitation. Complex strutures are then not properlyreprodued, despite the use of multigrids (Tran 1994) for apturing large strutures within the TI whilekeeping a searh template of small size.In this paper, we propose to replae the tree by a list. This new implementation presents severaladvantages. First, the list struture requires muh less RAM than the tree struture, and the searhtemplates an be hosen large enough to reprodue the omplex strutures within the TI properly.Furthermore, sine the memory burden is low, all the lists required by a simulation an be storedsimultaneously. In addition, a method inspired from Chugunova and Hu (2008) for handling non�stationary TI an be developped easily; in this ase, we use a ontinuous auxiliary variable for desribingthe non�stationarity and extended lists taking into aount for this seondary variable (Straubhaar et al.2009). Finally, the list�based algorithm is straightforwardly parallelizable and hene also e�ient interms of CPU time.
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2 Using lists for multiple�point statistis simulationHere, we de�ned the list for a given TI having M faies numbered from 0 to M − 1 (ategorial variable
s), and a given searh template de�ned by its lag vetors, h1,..., hN . In this situation, an element ofthe list is a pair of vetors (d, c) where d = (s1, . . . , sN ) de�nes a data event and c = (c0, . . . , cM−1)is a list of ourrene ounters for eah faies. The number ci is the number of repliates of the dataevents d found in the TI with faies i at the entral node, i.e. the number of nodes v in the TI satisfying
s(v + h1) = s1, . . . , s(v + hN) = sN and s(v) = i. Note that an additional virtual faies, e.g. −1, anbe used for onsidering data event partially informed provided by nodes near the border of the TI. Suha list allows to ompute the onditional probability distibution funtion (pdf) needed for simulating anode u in the simulation grid and given by

P(s(u) = k | d(u)) =
#
{

v ∈ TI : s
(

v + hij

)

= s
(

u+ hij

)

, 1 6 j 6 m and s(v) = k
}

#
{

v ∈ TI : s
(

v + hij

)

= s
(

u+ hij

)

, 1 6 j 6 m
} , (1)where u + hi1 , . . . , u + him are the informed (simulated) nodes in the neighborhood of u. This pdf issimply omputed by retrieving the ounters of the ompatible elements in the list.3 RAM requirementsOnly the omplete data events found in the TI, orresponding to the leaves of the lassial searh tree,are stored in the list. In the ase where M faies are present and a searh template of size N is used,the lassial searh tree is a M�ary tree with N levels, then the redution of RAM usage allowed by thelist storage an be signi�ative. For illustrating that purpose, we onsider searh templates of inreasingsize ontaining the N losest nodes to the entral node, and we retrieve the size of the orrespondingsearh trees and lists in gigabytes. The results are shown for two 3D TI in �gure 1a and 1b, and theratios between the size of the tree and the size of the list for these two ases are drawn on �gure 1. Werapidly observe a fator of 10 and more for the size of the tree in omparison with the size of the list.
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case b)Figure 1: a) RAM usage for a 3D training image having 600′000 nodes and 4 faies; b) RAMusage for a 3D training image having 14′128′385 nodes and 6 faies; ) Gain fator with thelist in omparison with the searh tree (ratio: size of tree over size of list).Illustrative example. We onsider here a simple example using the well�known TI of Strebelle han-nels, 3 multigrids and 116 zones for rotations and dilatations (�gure 2). The simulation requires 348lists, one per zone and multigrid. Sine the list struture is parsimonious, all of them an be storedsimultaneously.
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a) b) )

Figure 2: Multiple�zones simulation: a) Training image (Strebelle 2002) (250× 250); b) Zonesmap (1′000 × 1′000, 116 zones) for the simulation grid, de�ning orientation and dilatation:orientations go from 0o to 360o in eah irle and dilatation from a fator of 1 to 0.4, from theentre to the borders; ) one simulation (1′000× 1′000).4 Parallelization and CPU performanesWe show in this setion how a list�based multiple�point statistis algorithm an be parallelized onshared or distributed memory mahines (using OpenMP or MPI tehnology). Assume that p proessorsare available. In this ase, eah list required by the simulation is divided in p parts of balaned size andeah one of theses p partial lists is stored in the memory assoiated to a single proessor. Then, thesimulation of eah node in the simulation grid is parallelized as follows. For omputing the pdf (1), eahproessor retrieves the needed information (ounters) by sanning its own loal list. The informationretrieved by all proessors is then merged (using a parallel omputing ommuniation), and the pdf isomputed. The simulated faies is then drawn from this pdf, and the simulation grid is updated on allproessors (ommuniation). The resulting parallel list�based algorithm presents good performanes interms of CPU ressoures: it approximatively spends the same amount of CPU time with two proessorsas a serial algorithm using searh trees (Straubhaar et al. 2009).ReferenesChugunova, T. and L. Hu (2008). Multiple�point statistial simulations onstrained by ontinuousauxiliary data. Mathematial Geosienes 40 (2), 133�146.Guardiano, F. and R. Strivastava (1993). Multivariate geostatistis: beyond bivariate moments. InA. Soares (Ed.), Geostatistis Troia, Volume 1, pp. 133�144. Kluwer Aademi, Dordreht.Journel, A. and T. Zhang (2006). Neessity of a multiple-point prior model. Mathematial Geol-ogy 38 (5), 591�610.Renard, P. (2007). Stohasti hydrogeology: what professionals really need? Ground Water 45 (5),531�541.Straubhaar, J., P. Renard, G. Mariethoz, R. Froidevaux, and O. Besson (2009). An improved parallelmultiple�point algorithm using a list approah. Mathematial Geosienes . submitted.Strebelle, S. (2002). Conditional simulation of omplex geologial strutures using multiple-pointsstatistis. Mathematial Geology 34 (1), 1�21.Tran, T. T. (1994). Improving variogram reprodution on dense simulation grids. Computers & Geo-sienes 20 (7), 1161�1168.
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In industrialized countries, the current pattern of urban development is increasingly taking the 

form of low-density, decentralized residential and commercial development. This form of 

development, the environmental and quality-of-life impacts of which are becoming central to 

debates over land use and land cover in urban and suburban areas is now commonly known as 

“sprawl” (Oguz et al. 2007). Many classic symptoms are loss and fragmentation of the natural 

resource, declining water quality and traffic congestion (Burchell et al. 1998). Land cover is an 

important element of ecological function (Wicklam et al., 2002). While urbanization has 

occurred, natural resource lands, such as forest, wetlands and agriculture, have been replaced by 

land uses with more impervious surfaces. Predicting future environmental consequences requires 

being able to predict the spatial pattern of land use change. 

An emerging branch of geocomputing involves the modelling of spatial processes. A variety of 

techniques are being used, the most important being traditional cellular automata. Most of these 

models tempt to capture the evolving nature of real cities and region, but the most pressing 

concerns evaluation of their results and they cannot be strictly predictive. 

As in numerous agglomerations, Pau is typically organised following fractal organisations. This 

organisation requires neighbourhood interaction but also long-distance spatial interactions to be 

simulated. Multipoint statistic algorithms are now sufficiently elaborated to simulate complex 

features such as these fractal organisations. 

Our case study focuses on multipoint statistics application for urban expansion prediction. 

Multipoint statistics classically use training images in stationary mode. By integrating auxiliary 

properties, training images can evolve to a non-stationary state (Chugunova, 2008). This allows 

integrating various properties to guide multipoint simulations. The multi-realisation scheme 

associated with classical stochastic simulations enable to assess a variety of results and thereby a 

probability of urban expansion. 

Initial dataset used are composed of aerial photographs taken respectively in 1997 and 2007. 

These images coupled with a digital elevation model are interpreted to create on one side the 

initial training image (Fig. 1a) and on the other side to calibrate multipoint statistic simulations 

(Fig.2a). 
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Figure 1: (a) 1997 aerial photographs interpretations draped on the digital elevation model 

used as training image and associated auxiliary properties used for simulations: (b) Road 

framework classification, (c) Annual municipal population growth, (d) Landscape slope and (e) 

Altitude. 

 

A statistical analysis of land-uses according to altitude and land-slope shows good correlations 

between urban or industrial areas and topographic characteristics. One of important constraints 

of urban expansion is the road framework. To integrate this information in the simulation 

process, a complementary discrete property was added to represent this phenomenon. In order to 

predict the urban expansion, population growth statistics for each municipality between 1997 and 

2007 were extrapolated, using the same extracted laws, until 2027. 

Following these observations, the simulations are performed using altitude, land slope, road 

framework and local annual population growth as auxiliary properties (Fig. 1b to 1e). The 

simulation process is therefore guided by the constraints of different nature extracted from 

different sources. Neither combination nor transformation of those constraints is necessary. MPS 

algorithm allows to “predict” the type of land-use basing on neighbourhood land-use areas as 

well as the combination of constraints. 

The results show the urban expansion as multi-realisations and the derived probability of this 

expansion. In order to verify road framework distribution and simulation algorithms, the road are 

simulated together with different land-use areas. In our case roads are strongly conditioned by 

the auxiliary property described as “road framework classification”. 

Two simulations were run. The first one is estimating urban expansion for 2007, which can be 

compared with aerial photographs interpretation (Fig. 2a and 2b). The second one for 2027 to 

predict urban expansion with a constant population growth (Fig. 2c). The results show strong 

similarities between multipoint statistic realisations and aerial photographs interpretations (Fig. 2 

a and 2b). This similarity is explained by the realistic population growth calculated between 

1997 and 2007 for each municipality but also by the correct integration of altitude/slope maps 
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and road frameworks information: urban areas are developed in low altitude and slope, near to 

road frameworks. Predictive simulation for 2027 shows the same general land-use distribution, 

with a strong growth of small municipalities away from the main urban pole (Pau agglomeration) 

and thereby an extension of the “sprawl” effect. This observation is realistic according to Pau 

urban saturation. This prediction could lead to major traffic congestions in the northern and 

western part of the urban pole. 

In this work a static modelling was used to represent an evaluation in time of a spatial structure. 

This is possible by integrating a property which represents a spatial evaluation. In our case it was 

an annual population growth. The proposed approach can be applied to other spatial processes to 

predict its evaluation while integrating constraints of different sources. 

a b c

Non urban land use Rural areas
Urban areas Industrial areas

Roads

0

5

10 km

 
Figure 2: (a) 2007 aerial photograph interpretation draped on a digital elevation model and 

simulation results (most probable) for (b) 2007 and (c) 2027 urban distributions. 

 

References 

Burchell RW, Shad NA, Philips H, et al (1998) The costs of sprawl-revisited. Transit 

Cooperation Research Program, Report 39, Washington  DC, pp: 268 

Chugunova T (2008) Contrainte des modèles génétiques de reservoirs par une approche de 

reconnaissance statistique de forme. PhD, Ecole des Mines de Paris 

Hakan O, Klein AG, Srinivasan R (2007) Using the Sleuth urban growth model to simulate the 

impacts of future policy scenarios on urban land use in the Houston-Galveston-Brazoria CMSA. 

Research Journal of Social Sciences 2: 72-82 

Wickham JD, O’Neill RV, Riitters KH, et al (2002) Geographic targeting of increases in nutrient 

export due to future urbanization. Ecological Applications 12: 93-106 

 

 

                                                             15



            

DIRECT MULTIPLE-POINT GEOSTATISTICAL SIMULATION OF EDGE 

PROPERTIES FOR MODELING THIN IRREGULARLY-SHAPED SURFACES 

 

M. Huysmans1, A. Dassargues1,2 
 

1 KULeuven, Earth and Environmental Sciences, Leuven, Belgium, 

marijke.huysmans@ees.kuleuven.be, Tel: 0032 16 326449, Fax: 0032 16 322980 

2 Université de Liège, Department of Architecture, Geology, Environment and Civil Engineering 

(ArGEnCo), Hydrogeology and Environmental Geology, Liège, Belgium 

 

Thin irregularly-shaped surfaces such as clay drapes often have a major control on flow and 

transport in heterogeneous porous media. Clay drapes are often complex curvilinear 3-

dimensional surfaces and display a very complex spatial distribution. Variogram-based 

stochastic approaches are often also not able to describe the spatial distribution of clay drapes 

since complex, curvilinear, continuous and interconnected structures cannot be characterized 

using only two-point statistics. Multiple-point geostatistics aims to overcome the limitations of 

the variogram. The premise of multiple-point geostatistics is to move beyond two-point 

correlations between variables and to obtain (cross) correlation moments at three or more 

locations at a time using "training images" to characterize the patterns of geological 

heterogeneity. Multiple-point geostatistics is able to reproduce thin irregularly-shaped surfaces 

such as clay drapes but is often computationally intensive. To capture the thin surfaces, a small 

grid cell size should be adopted for the training image. This results in large training images and a 

large search template size and thus a large CPU and RAM demand (Huysmans and Dassargues, 

2009). 

This paper describes and applies a methodology to simulate thin irregularly-shaped surfaces with 

a smaller CPU and RAM demand than the conventional multiple-point statistical methods. The 

proposed method is based on the idea proposed by Stright et al. (2006) of using edge properties 

for upscaled flow simulation without losing information about thin irregularly-shaped flow 

barriers. To preserve these important fine-scale features at the flow simulation block scale, 

Stright et al. (2006) introduces an additional modelling variable as the edge of a model cell. The 

edge of a model cell is a continuous or categorical value associated with the cell face. This idea 

is extended in this paper to not only use edge properties in the flow simulation step but also in 

multiple-point geostatistical facies simulation step. This work explores the idea of directly 

simulating edge properties instead of pixel properties to make it possible to perform multiple-

point geostatistical simulations with a larger cell size and thus a smaller computation time and 

memory demand. The proposed methodology of directly simulating edge properties is explained 

by applying it to a small and simple training image. Next, the method is applied to simulation of 

clay drapes in a real cross-bedded aquifer in Belgium.  
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The method starts from a training image depicting the thin irregularly-shaped surfaces of interest. 

The grid scale of this training image should be fine enough so that the thin surfaces can be 

depicted using pixels. Fig 1a shows a simple training image to illustrate the method. It shows 

sand bodies separated by a few horizontal and inclined clay drapes.  

 

 
 

Second, the training image is indexed. Each large scale facies body is indexed individually, from 

1 to the number of facies bodies, so that the thin irregularly-shaped surfaces of interest separate 

the individual facies bodies. In our example, each sand body is given a number from one to eight 

(Fig 1b). Third, a model grid size for simulation is chosen. This grid should be chosen so that it 

allows flow simulation within a reasonable computation time and so that it preserves the flow 

behaviour and connectivity of the relevant structures of the fine scale training image. This 

coarser grid is superimposed over the training image and grid nodes are placed at the center of 

each grid cell (Fig 1b). In the fourth step of the method, the grid is searched in the x, y and z-

direction for the presence of clay drapes between grid nodes of the coarser grid (Stright et al., 

2006). If the index value of the two nodes differs, then the edge between the two nodes is flagged 

as “1”, indicating that a clay drape is present. Otherwise the edge between the two nodes is 

flagged as “0”, indicating that no clay drape is present (Fig 1c).  After this process, the edge 

properties can be represented by two matrices (or three 3D matrices in 3D) with the same size as 

the coarse grid: matrix B displaying the edge properties at the bottom of a grid cell (Fig 1d) and 

matrix R displaying the edge properties at the right side of a grid cell (Fig 1e). The edge 

properties at the top and left side of a cell are not stored since they can be obtained from the edge 

properties at the bottom and right side of neighbouring cells. In the fifth step of the method, 

matrices B and R are combined into one matrix E by applying the coding shown in Table 1 

describing the four different possibilities for each cell. This allows obtaining a single training 

image displaying all edge properties. If, for example, a cell displays no flow barrier, this cell is 
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coded “0”. If, for example, a cell displays a flow barrier at the right and not at the bottom, this 

cell is coded “1”. The E-coded training image of our simple example is shown in Figure 1f. The 

E-coded training image can now be used as input training image to perform SNESIM simulations 

with 4 categories, i.e. the four possible outcomes for E. This E-coded training image (Fig 1f) is 

much coarser than the original training image depicting thin irregularly-shaped surfaces of 

interest using pixels (Fig 1a), while still preserving all relevant information about the presence of 

the clay drapes.   

Table 1 Definition of E-coding 
B R E 

0 0 0 

0 1 1 

1 0 2 

1 1 3 

 

The proposed method is also applied to the cross-bedded Brussels Sands aquifer in Belgium. The 

small grid cell size training image (Fig. 2a) is converted into an edge training image with a larger 

grid cell size (Figure 2b). This edge training image is used as training image to perform SNESIM 

simulations with 4 categories. In this case, direct SNESIM simulation of edge properties is 60 

times faster than ordinary SNESIM simulation of facies. 

 
Figure 2 (a) Vertical 2D training image of 30 m x 30 m in N40°E direction (white = sand facies, 

black = clay-rich facies) (adapted from Huysmans and Dassargues, 2009); (b) Edge training 

image 

 

Huysmans M. and Dassargues A., 2009, Application of multiple-point geostatistics on modeling 
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Introduction 

Distance-based spatial stochastic modeling techniques have recently emerged in the context of 

ensemble modeling, in particular for data integration, model selection and uncertainty 

quantification. The objective of this work is to present a workflow which can rapidly generate 

multiple high-resolution models that are sufficiently constrained to dynamic data. This allows for 

a realistic assessment of uncertainty. We employ a distance-based ensemble modeling technique 

for data integration and propose a multi-resolution framework. Here distances are computed on 

coarse-scale models to efficiently evaluate transfer functions, while accurate fine-scale models 

are generated constrained to available dynamic data. Flow-based upscaling techniques are 

applied to generate the coarse models, and potential upscaling errors are accounted for in the 

workflow through an error modeling-based adjustment in the distance calculations. 

 

Description of Method 

Upscaling and Error Modeling.  Ensemble modeling techniques usually require the computation 

of a transfer function g for each model in the ensemble. The function g is often a subsurface flow 

simulation, which for high-resolution models, can be CPU prohibitive. To reduce the 

computational intensity, we compute g on coarse-scale models c

ix  which are generated from the 

associated fine-scale models xi (where i represents one model/realization) using flow-based 

upscaling techniques, which are widely applied in subsurface flow simulations (see e.g., 

Durlofsky, 2005).  

Although there exist a variety of upscaling techniques which can provide adequate accuracy in 

many cases, upscaling may induce some errors in the coarse models and thus in the transfer 

functions. The objective here is to appropriately account for these errors in an efficient manner, 

e.g., without evaluating g at the fine scale. We introduce an error modeling approach based on 

the assumption that models with similar responses on the coarse scale result in similar upscaling 

errors.  Thus, if we group the models with similar coarse-scale responses, we can estimate the 

error from a typical model in the group, and associate the estimated error to other models in that 

group. A k-means clustering technique (see Scheidt and Caers, 2009a) is applied to classify 

models with similar coarse-scale responses in order to estimate the upscaling error e. We then 

assign a single upscaling error )()( c

kkk xgxge −=  to every model in a particular cluster k. Note 
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that the estimation of error thus requires only a few fine-scale flow simulations. If this error 

estimation is not sufficiently accurate, new fine-grid simulations can be iteratively added in order 

to obtain a better estimation of e for each cluster. 

Distance-Based Modeling. The purpose of distance-based modeling is to parameterize the large 

variability between reservoir models in a given ensemble. A distance relevant to data integration 

is simply the difference in responses between any two models in the set. Then, once we have an 

estimate of the upscaling error e for each coarse-grid model, we can approximate the distance 

between any two high-resolution models as the distance between the coarse models, corrected for 

upscaling error: i,jdd j

c

ji

c

i

ec

ij ∀++=+   ))(,)(( exgexg . In this paper, we apply a post-image 

problem in the multi-resolution framework. The post-image problem is a distance-based 

modeling technique that provides a stochastic parameterization of an ensemble of models. It 

constructs a distance matrix and employs the classical Karhunen-Loeve expansion (KLE) and 

kernel-based techniques, which allows new realizations to be generated and adjusted to new data 

(Scheidt et al., 2008).  A full account of this approach is published in Caers et al. (2010). 

 

Application 

The proposed workflow is applied to a 3D test case, involving 100 realizations of log-normally 

distributed permeability fields. We consider a five-spot pattern, where the injector and four 

producers operate at fixed bottom hole pressures. The fine-scale models of dimensions 

55×55×25 are uniformly coarsened to 11×11×5 using standard local permeability upscaling. In 

this particular example, the use of coarse-scale models introduces some errors. This results from 

the relatively large upscaling ratio and because we do not apply near-well upscaling.  Figure 1a 

shows the estimated P10, P50 and P90 quantiles of the field water rate, for fine and coarse-scale 

flow simulations. Figure 1b shows the corrected coarse-scale predictions. 
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Figure 1: P10, P50 and P90 quantiles of field water production for (a) fine and coarse-scale 

models, (b) fine and corrected coarse-scale flow simulations. 

The objective is to construct new high-resolution models that are constrained to water production 

at each well.  In order to estimate the upscaling errors, six fine-scale simulations are performed 

based on the k-means clustering. The post-image problem is then applied to construct new 

models that are constrained to the water injection and production data.  
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Figure 2a shows the field water production for the initial models (gray lines), the ten new models 

(red lines) and the production data (green dots). Figure 2b displays histograms of the objective 

function (distance to the “truth”) for the initial models (red) and the newly generated models 

(blue). We observe that the new models show a clear improvement (i.e., smaller objective 

function values), in terms of agreement with the dynamic data, compared to the initial ensemble. 
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Figure 2: (a) Field water production for initial and new models, (b) Histogram of the objective 

function for the initial ensemble of models and the new set of models 

Conclusions 

This paper presents a novel method to generate ensembles of models using distance-based 

stochastic modeling techniques in a multi-resolution framework.  Starting with an initial set of 

model realizations, we demonstrate how to construct new high-resolution models that are 

constrained to dynamic data by evaluating the transfer function on the associated coarse models. 

The method employs distance-based modeling techniques, where the distance between any two 

models is defined from the coarse-scale simulations.  An error modeling procedure is introduced 

in the distance calculations to account for the potential error in upscaling. The method is general 

in that it can handle simulation errors, due to the use of either coarse-scale models or proxy 

models, through the updating of the distance function. We note finally that the method can be 

applied not only to the post-image problem, but also to other distance-based techniques, such as 

distance-based Ensemble Kalman Filter (Park et al., 2008).  
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 Abstract 

Understanding the spatial distribution of categorical data is relevant, since many processes in the 

Earth Sciences depend upon the connectivity of facies, soil and rock types. Geostatistical 

simulation aims at characterizing the spatial distribution and its uncertainty by generating 

alternate scenarios of these variables, exploiting the spatial correlation. This is traditionally done 

by using a variogram or spatial covariance, but these methods have proven to be insufficient in 

some cases, where the connectivity shows patterns that are not well reproduced with these 

traditional techniques. Multiple point simulation provides a new set of tools to characterize these 

variables. The goal is to reproduce the relationships of points in specific patterns, so that globally 

the generated realizations show the desired connectivity, which is corroborated by the statistical 

reproduction of specific patterns frequencies (Strebelle, 2002; Ortiz, 2008).  

 

We present a conditional algorithm based on texture synthesis (Wei, 2001; Daly and Knudby, 

2007) and discuss an approach to parallelize its implementation. The idea in computer vision is 

to reproduce a texture, provided in a training image. The main difference is that the computer 

vision problem is not concerned with conditioning to hard data. 

 

The algorithm works by defining a unilateral path with a pattern containing a causal and non-

causal region (Figure 1). The highlighted node is simulated conditional to all previously 

simulated information in the template, called causal region. Conditioning is ensured by adding a 

non-causal region, which looks ahead of the unilateral simulation path and ensures that all 

simulated values are consistent with conditioning data within the template. Pattern statistics are 

retrieved from the training image and the frequencies of the patterns are stored in a linked list. 

The distribution of categories in the causal region is used as a key to identify patterns that are to 

be used during simulation. Conditioning data in the non-causal region are used as a filter when 

the frequencies are retrieved. 

 

The simulation grid is visited in order, rather than randomly, so that the causal region of the 

pattern is always informed by previously simulated nodes (except at the beginning). The non-

causal region informs about conditioning data.  
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At every visited node, the information of the causal pattern is gathered (categories) and the 

frequencies of a set of similar patterns are retrieved from the training image. If conditioning 

information is available in the non-causal region, only the patterns that honor the hard data are 

considered. The conditional probabilities for the categories are computed using the most similar 

pattern, using a weighted distance scheme. A value is drawn from the conditional distribution 

and added as conditioning information in the causal region for subsequent nodes. 

 

 

 

 

The algorithm works well and is able to reproduce long range connectivity with a relatively 

small search pattern. Furthermore, this implementation does not require using a multiple grid 

approach (Parra and Ortiz, 2009).  

 

To improve the algorithm performance, parallelization can be achieved in two ways. The first 

approach consists in parallelizing at the realization level, that is, computing each realization in a 

separate process, avoiding all communication between processes. The second and most 

challenging way is to parallelize at the path level, in order to simulate a single realization using 

multiple processes. This approach is described next.  

 

The domain to be simulated must be divided into regions, so that in every region, one or more 

nodes can be simulated simultaneously, without communication problems. Since the path to 

visiting the nodes is fixed, we know which conditioning nodes are required to simulate a specific 

location. Parallelization is achieved by proceeding row-wise (Figure 2). The single-process 

algorithm starts from the first node at the bottom row of the realization grid. According to the 

causal-template, it is possible to define how many nodes  have to be simulated before 

simulating nodes in the second row. When  nodes have been simulated in the first row, process 

2 can start simulating the first node of the second row, since the required conditioning 

information is available. Simultaneously, the  node in the first row is being simulated by 

process 1. This approach can be repeated in order to achieve a pre-defined maximum of 

concurrent processes.  

a) Template c) Simulation process b) Conditioning data d) Realization 

Figure 1: Illustration of the implementation of the causal and non-causal region for 

conditioning during simulation. 
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The speed up of this approach depends on the number of processes run in parallel, the size of the 

search template and of the simulation grid. Some examples are presented to demonstrate the 

algorithm performance. 
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a) Template b) Simulation process 

Figure 2: Illustration of parallel simulation. Yellow zone represents simulated nodes, the 4 

marked nodes will be simulated at the same time. 
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Introduction and goal

Maps of the numerical forecasts of waves at the Western Mediterranean Sea during the

last 5 years are stored at the LIM premises. We would like to �nd an automatic way to

classify these maps in the four dominant regimes relative to the interaction of waves with

the Catalan Coast: calm situations, E-storms, N/NW-storms, and SW-storms. For this

goal, each forecast map is represented by some characteristic features, the wave energy

(actually, the log of signi�cant wave height) at p = 8 pre-speci�ed pixels. Thus each

forecast becomes a point ~xi in the feature space Rp, a p-dimensional real space. Notice that

the feature space is not the geographic space. N = 970 of these maps has been classi�ed

by experts in the D = 4 regimes. We aim thus to assign a probability of classi�cation

in a regime class to each point of the feature space. In such cases, we commonly apply

a discriminant technique. However, these methods produce probability vectors with a

component near to 1 (highly informative) at feature points very far from the observed

ones. Geostatistical interpolation techniques (e.g. Indicator Kriging (IK), Journel, 1983)

would be better adapted to our needs: results would become non-informative probabilities

beyond the range of in�uence of the available data, and somehow �follow� them within

their range. However, classical IK is discarded because it frequently delivers negative

probabilities. In this contribution we consider that the probability that a map i (as a

whole) belongs to each of the four groups is a vector z(~xi) of the four-part simplex SD,

the sample space of D-part probability vectors (Aitchison, 1986). We assume that these

are realizations of a random function Z(~x), de�ned on the feature space Rp. For each of

the N labelled forecasts, we observe one of the D categories, as an indirect information

about z(~xi). A Bayesian approach within a model-based framework (Diggle et al., 1998)

is accordingly used to estimate the probabilities z(~xi) for labelled forecasts ~xi. These

probabilitis can be then interpolated to any feature-point.

Prior and data model

Diggle et al. (1998) present a fairly similar case, in a success/failure-classi�cation case.

They assume that the number of successes observed at each location ~x follows a bino-

mial model with underlying probability p(~x), independent between locations. The spa-

tial dependence is introduced by assuming that log(p/(1 − p))(~x) is a Gaussian random
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�eld, second-order stationary. To generalize this model to D categories, we make use of

the Euclidean space structure of SD introduced by, e.g. Pawlowsky-Glahn and Egozcue

(2001): D-component probability vectors z are fully identi�ed with their orthonormal co-

ordinate vectors ζ, computed as ζ = V · ln(z), and inverted with z = C[exp(Vt · ζ)] =

exp(Vt · ζ)/1t · exp(Vt · ζ), where logs and exponentials operate component-wise, and V

is a (D−1)×D matrix of contrasts, i.e. such that its rows sum up to 0, V ·1 = 0, and form

a set of orthonormal vectors. Take now the observed labels J(~xi) as vectors of 3 zeroes

and 1 one, placed at the component of the category observed at ~xi. We assume for them

a multinomial model J(~xi) ∼ Mu(n = 1, z(~xi)), again independent between locations.

The log-likelihood of z is then lnL(z|J) = κD(J) +
∑

i Jt(~xi) · ln(z(~xi)), or in terms of

coordinates ζ,

lnL(ζ|J) = κD(J)+
N∑

i=1

Jt(~xi)·ln
exp(Vt · ζ(~xi))

1t · eVt·ζ(~xi)
= κD(J)+

N∑
i=1

Jt(~xi)·Vt·ζ(~xi)−g(ζ) (1)

where g(ζ) =
∑N

i=1 ln(1t · exp(Vt · ζ(~xi))). The prior distribution for z(~x) is stated in

terms of its coordinates, by saying that the vector of coordinates ζ(~x) forms a multivariate

Gaussian random �eld. Thus, the prior density π0(ζ|µ,Σ) of the vector ζ = [ζ(~xi), i =

1, . . . , N ] satis�es

ln π0(ζ|µ,Σ) = κN (µ,Σ) + µt ·Σ−1 · ζ − 1

2
ζt ·Σ−1 · ζ, (2)

as usual for normal variates. For our application, we assume that ζ(~x) is second order

stationary, with known mean µ(~x) = V · ln(0.5, 1, 1, 1) (i.e., giving a priori lower likelihood

to calm situations, which are less dangerous but over-represented in the data set) and

covariance Σij(~xn, ~xm) = Cij×ρM(~xn−~xm|α, a) given by linear model of corregionalization

of an identity matrix Cij = δij, and a Matérn correlogram, with smoothness α = 2.5 and

an e�ective range of a = 0.4 (e.g. Diggle et al., 1998).

Posterior distribution for the probability vector

By Bayes Theorem, we add Eqs. (1) and (2) to obtain the log-posterior density for ζ

ln π(ζ|µ,Σ,J) = κ(µ,Σ,J)+µt ·Σ−1 ·ζ− 1

2
ζt ·Σ−1 ·ζ +

∑
i=1

Jt(~xi) ·Vt ·ζ(~xi)−g(ζ), (3)

i.e. an Aitchison distribution (Aitchison, 1986). We may then estimate the coordinate

vector of probabilities by maximizing Eq. (3), equivalent to solving the non-linear system

of equations Σ−1 ·(ζ−µ̂MP ) =
∑

i V·(J(~xi)−ẑMP (~xi)). Fig. 1(top) shows these maximum

posterior estimates ζ̂MP (~xi) obtained for a training set of 1/3 of the sample size N .

Interpolating the probabilities

Up to here, we obtained probability estimates for the labelled feature combinations (in

geostatistical jargon, the sampled locations). But we can easily interpolate these estimates
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Figure 1: Probability estimates for each dominant regime: maximum posterior estimates

for the training set, and interpolated with simple kriging for the validation set. The

training and validation sets contain a strati�ed sample of 1/3 and 2/3 of the data.

to an unlabelled feature ~x0 (unsampled location). Note that the vectors of observations J,

of latent probabilities z (and its mean µ and covariance Σ) can be considered to have a

block related to the non-labelled cases: the only di�erence is that for the unlabelled block

J(x0) = 0. Then the posterior (Eq. 3) can be factorized in the sum of a term (with an

Aitchison distribution) linked to sampled locations, and another term (with an unchanged

prior distribution) related to the unsampled location. Because the second term carries no

further information beyond the prior, the maximization of the �rst term can be obtained

as before ignoring the block J(x0) = 0. Finally, conditional on the values estimated for the

�rst block, note that the second block is a normal on the simplex with known mean and

variance. Thus the BLUE for ζ(~x0) is obtained by simple kriging of ζ̂MP (~xi) at sampled

locations, i.e. by simplicial IK (Tolosana-Delgado et al., 2007). Fig. 1 shows also the

obtained probabilities against the actual labels of the validation set.
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Introduction 

The recently developed multiple-point geostatistical tool SNESIM aims at reconstructing 

spatially continuous patterns by replacing the traditional two-point variogram by a multiple-

point training image (TI) (Strebelle, 2002). Although several applications can be found in 

petroleum- and hydrogeology, little research has been done on the use of multiple-point 

geostatistics (MPG) in soil science. However, also in soil science repetitive or curvilinear 

patterns appear that are hard to model with the traditional two-point geostatistical algorithms. 

Polygonal networks of ice-wedge pseudomorphs are an example of such repetitive soil 

features. These structures form hexagonal networks which are the imprint of thermal 

contraction cracks formed under periglacial circumstances. They were filled with ice and 

wind-blown sediment, resulting in wedge-shaped bodies extending several meters deep into 

the soil. At present their pseudomorphs are found across much of northern Europe. They are 

indicative for the severity of the paleoclimate during glacial periods since they are considered 

as indicators for permafrost (Ewertowski, 2009).  

Our aim was to evaluate the performance of traditional and multiple-point geostatistical 

algorithms in the interpolation of the presence of ice-wedge pseudomorphs as indicator data. 

First, we interpolated point data without prior knowledge, using ordinary kriging (OK) with a 

variogram model fitted to the experimental variogram. Then, we translated prior knowledge 

into a conceptual wave variogram model for OK and a polygonal network TI for SNESIM. 

For each method we assessed how the pattern reconstruction and the local accuracy of the 

estimation maps changed with an increasing number of data points. 

 

Construction of a reference image 

As a test case, we selected a field in the sandy silt region of Flanders, Belgium. The field was 

chosen because of a seldom available aerial photograph showing crop marks indicating the 

occurrence of pseudomorphs. To observe the differences in soil composition between the 

Tertiary host material and the Quaternary wedge filling, a part of the field (ca. 6 m by 6 m) 

was excavated to a depth of 90 cm. The host material had a sandy clay texture and dated from 

the Early Eocene-Ypresian (55.8 Ma - 48.6 Ma), whereas the younger wedge filling clearly 

had a larger sand percentage.  

To map the wedges, the field was measured with an electromagnetic induction soil sensor 

(EM38-MK2) (Cockx et al., 2006). After the noise and a significant trend had been removed 
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from the electrical conductivity measurements, the experimental variogram of the residuals 

showed a hole effect which is characteristic for repetitive features. To create a binary 

reference map, a coefficient of variation filter (kernel 3x3) was run on the interpolated map 

followed by a reclassification (Figure 2-left). From this binary reference map three indicator 

data series of each 13 data sets with an increasing number of data (from 84 to 840) were 

extracted according to a stratified random sampling scheme.  

 

Reconstruction with traditional and multiple-point geostatistics 

Without prior knowledge, the most obvious way to create an estimation map based on 

indicator data for two categories is OK. The classified kriged map using 168 indicator data 

and a spherical variogram model fitted to the experimental variogram (Figure 1a) is shown in 

Figure 2. As could be expected, the polygonal network was not well reconstructed. It is 

known that the diameter of the pseudomorph hexagonal cells is between 5 and 15 m (Ghysels, 

2008). Hence, we interpolated the same data points with a conceptual wave variogram model 

(Figure 1b) with a first minimum at a lag distance of 10 m and a sill at 0.25 since we assumed 

the pseudomorphs occurrence to be about 50 %. At first sight, the polygonal network was 

well reconstructed, but a closer look revealed that the algorithm could not make a distinction 

between the typical shapes for indicator 0 (host material) and 1 (wedge material): the map 

also shows white pseudomorphs with a black filling (Figure 2). With SNESIM prior 

knowledge about the spatial structure of the soil features can be translated into a TI. We 

designed a TI of a network of hexagons with a diameter of 10 m and a width of ca. 1 m, 

resulting in a pseudomorph occurrence of 52 % (Figure 1c). Although less detailed than the 

reference map, the classified E-type map reconstructs the shape of some dominant 

pseudomorphs reasonably well (Figure 2). 

 

a)    b)   c)     

Figure 1:  (a) Data driven variogram model, (b) conceptual wave variogram model and (c) 

conceptual TI. 

 

The previous analysis was repeated for all the 13 data sets of the three data series. Both OK 

with a wave variogram model and SNESIM reconstructed the polygonal network. However, 

no matter the number of data points, the former continued to estimate black and white 

pseudomorphs.  

150 m 
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Figure 2: Binary reference map and estimation maps of the pseudomorph occurrence 

interpolated from 168 indicator data. 

 

In soil science, local accuracy is also a requirement next to pattern reconstruction. To 

quantify the cell-by-cell agreement between the reference map and the estimated maps, we 

used the kappa statistic as implemented in the Map Comparison Kit software (Visser & Nijs, 

2006) (Figure 3). As long as the data points did not reveal the hexagonal pattern, SNESIM 

gave the most accurate estimation. If the number of data became large enough to reveal the 

polygonal pattern, traditional OK with a data driven variogram model was the most accurate 

estimation method.  

 

Figure 3: Kappa statistic for the agreement between the reference and estimation maps in 

function of the number of data points for the three different estimation methods applied. The 

error flags represent the standard deviations. 

 

Conclusion 

MPG can be a valuable contribution to soil science. Ice-wedge pseudomorphs are one 

example of repetitive soil features. Especially in situations where the number of data is too 

small to reveal the underlying pattern and where prior knowledge about the spatial structure 

is available, SNESIM is better able to reconstruct the pattern than two-point geostatistics. 

However, once the number of data becomes very large, traditional geostatistics performed 

best.  
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Abstract 

Weed control is an important issue of all production systems. Usually, herbicides are uniformly 

spread, based on a visual evaluation of the weed density, over the entire field aiming at weed 

control (Oliveira et al., 2008). On the other hand, there is no information about the weed 

population and its relation to soil properties. In this sense, it is possible to map in detail soil 

apparent electrical conductivity (ECa) measured by electromagnetic induction. According to 

McNeill (1980) ECa is influenced by soil water content, texture, organic matter, size and pore 

distribution, salinity, cationic exchange capacity, dissolved electrolytes concentration, soil 

temperature and colloid composition. The objective of this work was to determine the linear and 

spatial correlation between weed populations and soil apparent electrical conductivity (ECa) 

measured with electromagnetic induction. The study area surface is a 6 ha plot located in Castro 

Ribeiras de Lea, Lugo, Spain (Fig. 1a). The geographical coordinates of the study area are: 43º 

09' 49'' N and 7º 29' 47'' W, with an average elevation of 410 m.a.s.l. and an average slope of 2 % 

(Fig. 1b). The soil of the area is classified as Gleyc Cambisol. 

 

a) 
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Figure 1. Location map of the study area (a); digital elevation map of the study area (b); 

Sampling scheme of soil apparent electrical conductivity (ECa) for 1886 points and weeds 

population at 40 points (c). 

 

The crop at the moment of measurement was maize for silage under no tillage system. In the last 

years the crop was permanent grassland for silage. Apparent soil electrical conductivity (ECa, mS 

m-1) was measured with an induction electromagnetic device EM38-DD (Geonics Limited). The 

equipment consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide 

and effective measurement at a depth of approximately 1.5 m and the other one in vertical dipole 
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(ECa-V) with an effective measurement depth of approximately 0.75 m (McNeill, 1980). The 

data were collected on 23/06/2008 in 1859 points (Fig. 1c), using a field computer and a GPS 

RTK to georeference the electrical conductivity measurements. The software ESAP 2.35 (Lesch 

et al., 2000) was also used to determine the optimum position of the 40 sample points (Fig. 1c) 

for sampling the weeds populations, according with Lutman and Perry (1999). 

 

Table 1. Statistical parameters. 
Variable Unit N Min Max Media Variance CV Skew Kurt D 

ECa-V 1886 4.13 20.13 11.21 6.12 22.07 0.485 -0.243 0.071Ln 

ECa-H 
mS m-1 

1886 6.63 20.00 12.12 3.22 14.81 0.839 1.285 0.092Ln 

Dactylis glomerata 30 5 51 24 229.00 64.01 0.503 -0.986 0.160n 

Trifolium sp. 18 7 26 10 26.50 50.47 0.686 -0.124 0.246Ln 

Bellis perennis 25 5 31 13 32.40 43.15 0.286 -0.107 0.191Ln 

Plantago lanceolata 24 4 31 13 43.20 52.41 1.029 1.087 0.209Ln 

Taraxacum officinale 22 5 20 10 20.10 43.29 0.749 0.209 0.290Ln 

Achillea millefolium 17 1 15 9 18.80 48.61 0.534 -1.416 0.311n 

Other species 27 2 36 13 73.00 67.47 1.737 4.393 0.218Ln 

Weed density 

plants m-2 

40 26 77 52 185.00 26.00 0.308 -0..761 0.113n 

Number of species species m-2 40 1 6 4 1.60 35.30 -0.403 -0.302 0.204Ln 

N: number of measurements; Min: minimum value; Max: maximum value; CV: coefficient of variation (%); Skew: 

skewness; Kurt: kurtosis; D: Data normality for Kolmogorov-Smirnov test (p < 0.01, n: normal and Ln: lognormal). 

 

The statistical test of Kolgomorov-Smirnov (p<0.01) (Table 1) shows that the majority of the 

parameters measured have a lognormal distribution, but Dactylis glomerata and weed density 

data have a normal distribution. Coefficient of variation values are medium (CV = 12.00-60.00 

%) for all of the studied parameters except for Dactylis glomerata (CV = 64.01 %) and other 

species (67.47 %), being ECa-V e ECa-H the properties with lowest values of CV, 22.07 and 

14.81% respectively. 

Table 2. Semivariogram parameters. 
Variable Model C0 C1 a (m) SD (%) 

Log ECa-V Residual Spherical 0.0001 3.14 105.00 0.00 

Log ECa-H Residual Spherical 0.14 0.302 44.00 31.67 

Dactylis glomerata Spherical 1.90 12.00 210.00 13.67 

Trifolium sp Exponential 0.85 0.65 30.00 56.67 

Bellis perennis Spherical 0.85 1.65 50.00 34.00 

Plantago lanceolata Exponential 0.40 1.70 40.00 19.05 

Taraxacum officinale Exponential 0.30 0.75 40.00 28.57 

Achillea millefolium Spherical 0.30 0.40 80.00 42.86 

Otras especies Exponential 1.00 1.60 50.00 38.46 

Weed density Exponential 20.00 160.00 60.00 11.11 

Number of species Spherical 0.83 0.83 85.00 50.00 

C0: nugget effect; C1: structural variance; a: range (m); SD: spatial dependence (%). 

 

                                                             33



            

The values for Pearson´s correlation coefficient are not showed at this study because the 

correlations are weak or very weak, being the higher value of correlation calculated for ECa-V x 

Others species (|r|=0.488), ECa-H x Bellis perennis (|r|=-0.370) and ECa-V x Bellis perennis 

(|r|=-0.352). The spherical model of semivariogram (Table 2) showed the best fitting for the 

majority of the studied parameters, although the exponential model was used for Trifolium sp., 

Plantago lanceolata, Taraxacum officinale, Others species and weed density. The range value (a, 

Table 2) oscillates from 30.00 m (Trifolium sp.) to 210.00 m (Dactylis glomerata). 

All the maps (Fig. 2) were obtained using ordinary kriging. Spatial variability shows a similar 

pattern between the ECa-V and ECa-H maps (Fig. 2). In these maps the higher values of ECa are 

in the southwest side of the field. It is interesting to notice that only Dactylis glomerata and 

weeds density maps show the highest values in the same area where the values of ECa were 

higher. On the other hand, the maps of Bellis perennis, Plantago lanceolata, Taraxacum 

officinale and other species show the lowest values in the areas with highest ECa values. The 

topography of the field influences in the soil water flow, and soil water content is the main 

property which influences in the occurrence of the different weed species at this area. The use of 

ECa data for the optimizing the weed sampling scheme was an efficient tool. Although the linear 

correlation values are low between ECa and weed species, it is possible to identify a common 

spatial pattern in distribution of the different weed species and soil ECa measured with 

electromagnetic induction. 
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Figure 2. Maps of spatial variability for the studied attributes. 

 

 

                                                             34



            

References 

Lesch SM, Rhoades JD, Corwin DL (2000) ESAP Version 2.01R, user manual and tutorial 

guide.  

Research Report No.146. George E. Brown Jr., Salinity Laboratory, Riverside, CA, 153pp. 

Lutman  PJW, Perry NH (1999) Methods of weed patch detection in cereal crops. In: The 1999 

Brighton Conference – Weeds, Brighton 1999. Proceedings BCPC, 1999. P.627-634. 

McNeill J.D (1980) Electrical conductivity of soils and rocks. Technical Note, TN-5, Geonics 

Ltda, Ontario, 22p. 

Oliveira JP, Batista LF, Siqueira GM (2008) Variabilidade espacial de plantas daninhas num 

latossolo vermelho sob sistema plantio direto. Revista Brasileira de Engenharia de Biossistemas 

2: 273-281. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             35



THE IMPROVEMENT OF PEAT DEPTH MODELS FOR NORTHERN IRELAND 
THROUGH THE INVESTIGATION OF TELLUS DATA 

 

M. Robinson1, J. McKinley1, A. Ruffell1, M. Young2 
 

1
 School of Geography, Archaeology and Palaeoecology, Queen’s University, Elmwood 

Building, BT7 1NN, Belfast, N. Ireland, mrobinson34@qub.ac.uk, +44 (0)28 9097 3312 
 

2
 Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Malone Lower,  

BT9 5BF, Belfast, N. Ireland, gsni@detini.gov.uk, +44 (0)28 9038 8462,  

+44 (0)28 9038 8461    
 

Introduction  
 

The government of the United Kingdom (UK), under the UN Framework Convention on Climate 

Change, is committed to the implementation of policies that protect and enhance reservoirs of 

greenhouse gases. CO2 is considered the main anthropogenous greenhouse gas, with its 

atmospheric concentration being limited by the sequestration of Carbon (C) in vegetation and 

soils.  
 

The high proportion of soil carbon within peat (42% of soil C in NI (Tomlinson and Milne, 

2006)) is explained by the relatively high carbon density of peat and peaty soils. Soil C density, 

the mass of organic C per unit area, is calculated using %C, depth and bulk density values.  
 

This research investigates the use of Tellus gamma radiation data to produce peat depth models 

for Northern Ireland and improve estimates of carbon stocks. The gamma spectrometer system 

utilised in the Tellus airborne geophysical survey collected information on naturally-occurring 

potassium (K), uranium (eU) and thorium (eTh) in the ground surface. Gamma-radiation from 

rocks is attenuated by overlying peat, with previous tests indicating some correlation between 

gamma-radiation and peat depths to at least 2m. Current work is assessing the relationships 

between the Tellus data and previous peat depth measurements using geostatistical techniques 

within GIS. Hyvonen et al (2005) reports the successful use of gamma radiation for limited depth 

mapping in Finland while unpublished preliminary tests in Northern Ireland have also been 

positive. An improved peat depth model, produced through the integration of the Tellus data and 

known peat depths, could improve carbon stock calculations. 
 

Methods  
 

Before geostatistical analysis could be utilised, peat depths from historical sources (1956) and 

recent surveys (1997/98) had to be incorporated into GIS through georeferencing and 

digitisation. This comprehensive dataset allows analytical techniques to be applied to every site 

simultaneously.  
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Results 
 

Case Study: Armoy Peat Bog 
 

Analysis will now focus on the pilot study site of Armoy peat bog, situated approximately 0.5 

miles north of Armoy village, Co. Antrim. The bog exhibits a typical raised-moss stage which 

has developed within a local depression (Double, 1956).  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values obtained from the model equations, illustrated in Fig.2 and Fig.3, were incorporated into 

GIS to produce outputs using Ordinary Kriging (OK). Fig.4 displays interpolated radiometric 

total count values using OK while Fig.5 shows interpolated peat depths generated using the same 

technique. 

 

The bog outline, as presented in the source material, 

was firstly digitised to restrict spatial interpolation to 

inside the area of study. Fig.1 displays the boundary 

of the Armoy site, with the peat depth sample 

locations and radiometric data points being clearly 

illustrated.  
 

The image indicates that the entire site is underlain 

by Basalt. The homogeneity of the underlying 

geology was an important factor when determining a 

suitable location for the preliminary study as the 

level of gamma radiation emitted from bedrock 

varies with geology type. Recent research shows that 

while an attenuated count rate of 300 cps from 

Dalradian Shists indicates a peat depth of 2m, a 

count of 300 cps from underlying Basalt, as in Fig.1, 

suggests a peat depth of approximately 0.5m.  

Gamma-ray levels from a site composed of a 

complex underlying geology will be interpreted in 

relation to peat depth in future research. 

Fig.1: Map displaying annotated image of 

Armoy peat bog  

  
Fig.2: Spherical semi-variogram 

model of gamma radiation total 

cps values 

Fig.3: Spherical semi-variogram 

model of peat depth values 

Spherical semi-variogram models 

were produced using the radiometric 

total count data (Fig.2) and peat depth 

measurements (Fig.3). Fig.2 was 

composed of two models to generate a 

more accurate representation of the 

spatial variation within the dataset. 

© Environment and Heritage Service and 

Ordnance Survey of Northern Ireland 

Copyright 2002 
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east. Several anomalies can be identified when comparing the outputs, including high radiation 

values in the south west and a point in the north containing both high peat depths and high total 

count values. These irregularities may be due to the historical nature of the depth data. Future 

work will involve crosschecking radiation levels using portable gamma-ray spectroscopy, as well 

as identifying temporal changes in peat cover through the analysis of orthographic imagery and 

field observations. 
 

Conclusion 
 

Northern Ireland, with considerable volumes of existing depth data, is an ideal location for 

establishing, through the employment of geostatistics, the relationship between radiation 

attenuation and peat depth. These results will significantly improve our national estimates of 

existing carbon-in-storage. 
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The interpolated images 

indicate a general correlation 

between gamma radiation 

and peat depth, with low total 

cps values being associated 

with high peat depths. Deep 

areas of peat located in the 

centre of the bog appear to 

correspond with low total 

count figures, however the 

radiation output suggests the 

areas of highest peat depth 

should be located further 

Fig.4: Map displaying interpolated total 

count values (OK) for Armoy 

Fig.5: Map displaying interpolated peat 

depth values (OK) for Armoy 
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Abstract 

The currency of the Flanders drainage class map was evaluated using data from two monitoring 

networks: one with good spatial coverage but poor temporal coverage and another with better 

temporal but poor spatial coverage. We combine both networks to obtain point expressions for 

mean highest (MHW) and mean lowest water tables (MLW) by applying time series analysis and 

total least squares regression. The resulting MHW and MLW point data set was used to evaluate 

the currency of the existing map and to identify regional differences. 

 

Introduction 

Phreatic groundwater dynamics are one of the most important land characteristics for agriculture, 

nature development and other land uses. In Flanders these dynamics are usually estimated from 

the natural drainage classes that are indicated on the Belgian soil map (1/20.000), based on data 

collected during the national soil survey (1947-1971). The natural drainage condition on the soil 

maps was derived from the depth of gley mottles and a reduction horizon and their position in 

the landscape. They are indicated using combined classes of the depth of reduction and the depth 

of mottling. However, these morphogenetic features do not always reflect recent changes in the 

hydrology and their expression also strongly depend on other soil properties like pH, parent 

material and organic carbon content.  

Even though the original definition was morphological, a common interpretation (eg Van 

Damme 1969, Boucneau 1996) of these drainage classes is a set of mean highest and mean 

lowest groundwater levels. The mean highest water level (MHL) and mean lowest water level 

(MLW) are defined as the mean value of the three highest and lowest groundwater levels 

measured biweekly for at least 8 years, preferably longer (30 years) for climate 

representativeness (Van der Sluijs and De Gruijter, 1985).  

To check the currency of the drainage class maps, mapped classes need to be compared to recent 

point estimates of MHW/MLW. Such estimates can be obtained from the recently established 

phreatic groundwater monitoring network. This network has a good spatial coverage (average 

density of 1/340 ha), but a poor temporal coverage since the monitoring started only in 2004-

2006 and only 2 observations are made per year. This means it has to be combined with data 

from monitoring networks with a better temporal coverage to derive MHW/MLW statistics.  
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Reference time series 

Two monitoring networks are used as a reference series for calculating the groundwater 

statistics: the shallow filters (<5m) of the primary network of Flemish Environmental Agency 

(VMM) and the monitoring networks installed in nature reserves. A selection was made: all 

locations with at least 2 years of measurements and 24 observations are included, further visual 

selection was made to exclude series with trends. A total number of 150 reference times series 

could be retained, which have a good coverage of both the drainage classes and the different 

considered regions. 

 

Time Series Analysis 

The monitoring period in some reference series was too short for the direct calculation of 

groundwater statistics. Moreover the monitoring periods have different lengths. This can lead to 

biased estimations since precipitation surplus is a major driving factor in groundwater 

fluctuations in western European climate (Knotters and Bierkens, 2000), and precipitation 

surplus varies by year. Therefore a time series model was fitted to the phreatic and precipitation 

surplus data and used to estimate the MHW and MLW over a fixed climate-representative period 

of 30 years (1978-2008).  The time series model used is PIRFICT (von Asmuth et al., 2002). 

This is an impulse- response model that uses precipitation surplus with a stochastic component.  

A different objective for using a time series model is that data can be interpolated for days 

without measurements. This is needed when the data of the reference series is combined with the 

measurements in the phreatic groundwater monitoring network. 

 

Phreatic groundwater monitoring network 

The phreatic groundwater monitoring network (figure 1), implemented and managed by the 

Flemish Environmental Agency (VMM) is built as an implementation of the European Nitrate 

Directive (91/676/EEG).  The network contains 2100 monitoring points, or a density of 1/340 ha. 

These points are measured 2 times per year, generally in spring and autumn. Monitoring 

piezometers were located more or less equally over Flanders, but with a higher density in regions 

more vulnerable to nitrate leaching (Eppinger and Thomas, 2007). 
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Figure 1 Location of the long reference series (black) and the phreatic groundwater monitoring 
network (gray) 

 

Combining the reference time series and the phreatic network data 

To estimate ground water statistics in case only a small number of observations is available, two 

different methods have been proposed. Both methods use linear regression to create a 

relationship between observations in the reference piezometers and the observations in the short 

time series. 

The first method (te Riele and Brus, 1991; Finke et al., 2004) was developed for estimating the 

mean highest and lowest water table using only two well timed observations in the short time 

series, in winter and summer, when the groundwater table is close to the MHW and MLW 

respectively. A regression relation is derived between the MHW/MLW and the observation at 

date X in the reference series, and applied to the measurement at the same date in the short 

series. 

The second method (Oude Voshaar and Stolp, 1997) can be used when a larger number of 

observations is available. In this case linear regression is used for to fit a relationship between 

the observations in the short time series and the observations in each of the reference series. The 

best relationship (i.e. with the best fitting reference series) is than retained and used for 

prediction. 

 

Total Weighted Regression 

Since in many cases the reference series were not measured on the same day as the short time 

series, both methods had to be adjusted: they rely on a relationship between the water level 

measured in the reference series on a specific date and the groundwater statistics derived in these 

series. If no observation is available a simulated water table on that specific date had to be used. 

This introduces uncertainty in the explanatory variable in both methods, which excludes the 

standard least-squares algorithms. Instead a weighted total least square method (Markovsky and 

Van Huffel, 2007) is used, which incorporates (and weighs for) the uncertainty in the 

explanatory variable. Compared to ordinary least squares, this method suffers less from 
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regression towards the mean (thus covering a larger range of drainage classes), and gives less 

weight to the less certain predictions, also influencing the confidence levels. The resulting MHW 

and MLW point data set is not dense enough for mapping, but allows the identification of 

regional differences. 
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Polygon maps representing soil classes with associated typical values of key soil properties 

(legacy data) exist in many locations. Effective methods are required for their incorporation into 

digital soil mapping (DSM) at national and regional scales so that additional sampling effort can 

be minimized and so that this useful information is not overlooked. 

Here we outline an approach to incorporating soil organic carbon (OC) values from polygon 

maps into a digital soil mapping procedure. Rawlins et al. (2009) demonstrated that airborne 

radiometric and altitude data (ancillary data) could improve soil organic carbon (OC) estimates 

for the whole of Northern Ireland within a linear mixed modeling framework. The models used 

by Rawlins et al. (2009) are summarized in Table 1. Here we use the same data as Rawlins et al. 

(2009) from the Tellus survey of Northern Ireland (6862 soil samples) to investigate whether a 

1:250,000 scale map of soil polygons with associated typical OC values (AFBINI) could further 

improve estimation of OC. We use the raw OC values associated with each polygon and Area-to-

Point (AtoP) kriged (Kyriakidis, 2004) OC values as additional fixed effects in the six models 

used by Rawlins et al. (2009). The AtoP approach involves kriging from irregularly shaped 

polygons to points. Unlike a centroid-based approach, the irregular shape and area of the 

polygons is taken into account during variogram deconvolution and kriging. Figure 1 shows 

maps of OC measured in samples from the TELLUS survey, the polygon map and AtoP kriging, 

the altitude and radiometric K data are also shown along with their correlations with TELLUS 

Log OC. 

Table 1. 

 
Table 2 shows that when considering all soil types the mean absolute errors were smaller than 

those obtained by Rawlins et al. (2009) for all six models when the raw polygon OC was 

incorporated into regression kriging, and smaller still when AtoP kriged OC was used as the 

extra fixed effect. This was also the case for the peat soils. For organo-mineral and mineral soils 

Fixed effects for Rawlins et al. (2009) models 

Model Fixed effects for  
Rawlins et al. (2009) 

1 Constant (ie the mean) 

2 Constant and altitude 

3 Constant and K 

4 Constant, K and K
2
 

5 Constant, altitude and K 

6 Constant, altitude, K and K
2
 

 

                                                             43



            

the results were less consistent, but using the information from the polygon maps provided 

improvement on Rawlins et al.’s (2009) models in some cases.  

A jack-knife procedure performed for all soils (results not shown) confirmed that using raw OC 

in models 1-6 reduced MAEs and using AtoP OC reduced these further. A jackknife for Model 6 

considering all soils and different soil types showed that 300 soil sample points was optimal to 

map OC for the whole of Northern Ireland (Figure 2). It also showed that using AtoP OC as an 

extra fixed effect reduced MAEs for all soil types except for some small sample sizes for mineral 

soils. 

 
Figure 1. Maps of TELLUS Log OC and various covariates. 

 

Table 2. Mean absolute errors (MAE) from regression kriging of soil organic carbon using 

Models 1-6 outlined in Table 1 (Rawlins) and Models 1-6 plus raw polygon OC (raw OC) and 

Models 1-6 plus Area to Point kriged OC (AtoP OC). 

 
We the extend approach used with OC to mapping of soil texture. AtoP kriged soil texture data 

are used with geochemical data as covariates in regression kriging. The percentages of sand, silt 

(a) TELLUS Log OC (b) Polygon Log OC, correlation = 0.61  (c) Log AtoP OC, correlation = 0.68 

   
(d) Key Log OC (e) Altitude (m), correlation = 0.60 (f) Radiometric K, correlation = -0.67 

 
  

   

 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

All Rawlins 6.46 6.08 4.43 3.86 4.53 4.02 

 Raw OC 6.13 5.94 4.32 3.82 4.43 3.96 

 AtoP OC 5.60 5.37 4.11 3.66 4.18 3.77 

Mineral Rawlins 1.93 1.85 1.62 1.57 1.61 1.57 

 Raw OC 1.88 1.82 1.62 1.56 1.60 1.56 

 AtoP OC 1.81 1.75 1.62 1.58 1.59 1.57 

OM Rawlins 3.32 3.40 2.66 2.64 2.86 2.69 

 Raw OC 3.35 3.35 2.72 2.65 2.82 2.68 

 AtoP OC 3.43 3.27 2.86 2.81 2.78 2.70 

Peat Rawlins 4.35 4.20 3.58 3.15 3.62 3.30 

 Raw OC 4.21 4.17 3.46 3.11 3.56 3.25 

 AtoP OC 3.89 3.90 3.19 2.82 3.36 3.04 
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and clay – important soil properties in DSM - are compositional data; we apply the additive log 

ratio transformation (alr) so that these data can be treated as unbounded random variables. The 

alr transforms of the typical soil texture values for each soil association in the 1:250,000 scale 

soil polygon map are used in AtoP kriging. Values are back transformed to give the percentages 

of sand, silt and clay and textural class for cross-validation at 800 sites. 

 
Figure 3. Jack-knife results for all, mineral, organo-mineral and peat soils using model 6 

outlined in Table and model 6 plus (raw OC) and plus Area to Point kriged OC (AtoP OC). 

 

We also assess the performance regression kriging with geochemical data and incorporating the 

AtoP kriged data as an extra fixed effect. This approach is promising when using the 

geochemical data and parent material codes. However, the geochemical data are expensive to 

collect and are not available as ancillary data in many locations. The radiometric and topography 

data collected as part of the Tellus survey were effective covariates for OC but not for soil 

texture. Other cheaper covariates need to be found to effectively map soil texture, but AtoP 

kriged values of texture provide useful approximations at the soil texture which should not be 

discarded. Electrical conductivity (ECa) measurements, Aerial imagery or derived topographic 

attributes have proved useful as covariates for mapping within field variations in soil texture in 

precision farming. Perhaps these could also be useful inexpensive covariates for mapping soil 

texture. These possibilities need to be further investigated. 
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Introduction 

The present study explores the use of multiple kernel learning (MKL) for spatial prediction of 

porosity and permeability fields in a subsurface reservoir from seismic information. Spatial 

distribution of these petrophysical properties is an essential component of a reservoir model used 

in oil production forecasting. The oil production model prediction is matched to the available 

measured production history, which is an inverse problem. Thus, there may be several porosity 

and permeability fields which would match the historical data well. Uncertainty about oil 

production forecasts can be estimated by running flow simulations with a set of possible realistic 

porosity and permeability fields. Several approaches can be adopted to build a set of realizations 

of such fields using 2-point geostatistics, multi-point geostatistics, object-based models, and 

more recently − data-driven models (Kanevski et al. 2002; Demyanov et al. 2008). In this study 

we exploit the flexibility of multiple kernel models to provide realizations of porosity and 

permeability fields. By wrapping a Support Vector Regression model MKL provides more 

interpretable solutions in terms of the relevance of contributing seismic inputs. MKL power in 

integrating different information sources is tested by extracting geological features from noisy 

seismic images. The flexibility of the approach is very adapted for modelling under uncertainty. 

Methods 

Support Vector Regression (SVR) is a kernel method for non-linear regression estimation 

(Vapnik 1995). Particularly adapted for high-dimensional data, SVR minimizes a robust cost 

function comprising empirical risk and model's complexity. SVR prediction is basically given by 

a weighted expansion of kernel functions 
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where the coefficients α and β are found by quadratic programming and b is the bias. Kernel 

functions provide an implicit mapping of the data to a higher dimensional space (feature space) 

where linear regression is possible, thus finding the correct mapping of the data is crucial and 

affects model's performance. Basis kernels such as the Gaussian radial basis function may 

encode a rigid representation of the data. A more flexible and interpretable kernel can be built 

using a convex combination of m basis kernels 
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The optimal weighted combination is found by SimpleMKL (Rakotomamonjy et al. 2008) which 

is an efficient gradient-based algorithm for the joint optimization of the kernel weights dm's and 

of the SVR coefficients α and β. 

Data 

A 2D section of the synthetic Stanford VI dataset (Castro et al. 2005) composed of meandering 

channels with high porosity and permeability was selected to demonstrate the applicability of the 

approach. The layer is perforated by 45 wells which form the training set. The multiple kernel is 

built using one kernel for XY coordinates and one kernel for the seismic attribute. In order to 

have a more realistic situation seismic data were perturbed with noise. Based on the perturbed 

field we applied a family of convolution filters to describe geological structures at different 

scales. The computed geo-features are stacked to the original noisy seismic and dedicated to a 

kernel. 

 
Figure 1. a) Raw noisy seismic; b,c) geo-features derived from a); d) target porosity; e) 

predicted porosity from XY+noisy seismic; f) predicted porosity from XY+noisy seismic+geo-

features; wells are shown with circles 

Experimental Results 

Tab. 1 demonstrates that XY coordinates and the most noisy seismic input only (Fig. 1a) do not 

give enough information to capture and to model the channel structure (cross-validation error is 

very high). MKL learns from the data that the noisy input does not help to model the porosity 

field. Therefore, higher weights are given to the XY kernel. The effect is visible in Fig. 1e where 

porosity patterns are mainly a function of XY. However, this model was very unstable and did 

not find acceptable results. Advanced models integrating the extended group of geological 

features describing channel structure have much lower errors, higher correlations (Tab. 1) and 

more realistic patterns (Fig. 1f) which are close to the target porosity field (Fig. 1d). In such case, 
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the influence of XY and the noisy seismic in the models is irrelevant and most of the weights are 

given to the geo-features (see Tab. 1). 

 
Models cvRMSE (st.dev.)    cvCorr (st.dev.) Kernel weights  

SVRxy+seismic 1.030 (0.008) -0.041 (0.085) dm of Kxy dm of Kseismic 

MKLxy+seismic 1.026 (0.025) -0.218 (0.221) 0.816 (0.393) 0.185 (0.393) 

SVRxy+seismic+features 0.674 (0.013) 0.752 (0.011) Σdm of (Kxy,Kseismic)   Σdm of Kfeatures 

MKLxy+seismic+features 0.645 (0.017) 0.779 (0.017) 0.031 (0.038) 0.969 (0.038) 

Table 1. Statistics for 50 best fitting models (mean and standard deviation of errors) 

 

Porosity model of Fig. 1f is only one among many best fitting models, i.e. models with low 

cross-validation errors. Depending on MKL parameters, the weights are distributed differently 

over the input features, which results in different possible porosity patterns. At the same time, 

matching these porosity fields to historical oil production data and not only to the porosity 

measurements from the wells is necessary to quantify uncertainties in prediction of reservoir 

performance. 

Conclusion 

MKL has demonstrated to be a powerful method for regression estimation and was easily 

applicable for porosity mapping in complex geological environments. Compared to the standard 

SVR model, MKL provides more flexibility in the kernel representation  and allows to 

understand how different inputs/features contribute to the solution. In addition, there is a need for 

processing seismic data to extract geologically plausible features, especially when dealing with 

noisy seismic data. Flexibility of MKL eases its adaptation to uncertain quantification. Actually, 

the posterior probability of MKL parameters according to scales of different inputs/features can 

be evaluated by matching the history of oil production.  

The research is partly supported by the Swiss NSF project N
o
 200020-121835/1, and by the 

industrial sponsors of the Heriot-Watt Uncertainty Quantification JIP, Phase III. 

References 

Demyanov V, Pozdnoukhov A, Kanevski M, Christie M (2008) Geomodelling of a fluvial 

system with semi-supervised support vector regression. Proceedings of the VII International 

Geostatistics Congress GEOSTATS'2008, pp. 627-636 

Kanevski M, Pozdnoukhov A, Canu S, Maignan M, Wong PM, Shibli SAR (2002) Support 

vector machine for classification and mapping of reservoir data. In: Wong P et al. (ed) Soft 

Computing for Reservoir Characterization and Modelling, Springer, pp. 531-558 

Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) Simple MKL. Journal of Machine 

Learning Research 9:2491-2521 

Vapnik V (1995) The Nature of Statistical Learning Theory. Springer 

Castro SA, Caers J, Mukerji T (2005) The Stanford VI reservoir. 18th Annual Report, Stanford 

Center for Reservoir Forecasting, Stanford University 

                                                             49



TRACKING CO2 PLUME MIGRATION DURING GEOLOGIC SEQUESTRATION 

USING A PROBABILISTIC HISTORY MATCHING APPROACH 

S. Bhowmik
1
, C.A. Mantilla

1
 and S. Srinivasan

1 

1
 University of Texas at Austin, 1 University Station C0300, Austin, TX 78712, USA, phone: 

+1 512 788 1256, email: ssriniva@mail.utexas.edu 

Introduction 

Geologic carbon storage seeks to minimize the impact of CO2 emissions by sequestering CO2 

in deep saline aquifers. Large-scale implementation of geologic carbon storage (GCS) will 

require monitoring on a project-by-project basis. Apart from purely regulatory concerns, 

operators are likely to avail themselves of any opportunity to track the CO2 plume so that 

they can better manage the storage operation. However, the large cost of most monitoring 

technologies, such as time-lapse seismic, limits their application. In this paper we investigate 

the application of probabilistic history matching using routine measurements of injection data 

as an inexpensive alternative to track the migration of CO2 plume in an aquifer. 

Probabilistic History Matching 

In the petroleum industry, history matching has been widely used to calibrate prior geologic 

models using production data for more accurate predictions of field performance. Since it is 

an ill-posed inverse problem with inherent non-unique solutions, it is important to address 

history matching in a probabilistic framework in order to characterize the remaining 

uncertainty in the final set of models.  In Pro-HMS- a software for assisted history matching 

developed at the University of Texas at Austin (Srinivasan and Bryant, 2004), the main 

objective is to assess the conditional probability { }| ,P A B C of a reservoir attribute (A) given 

the prior geological data (B) and the dynamic field data (C) by using the permanence of ratio 

hypothesis proposed by Journel (2002).  
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The conditional probability P{A|B} is obtained from sequential indicator simulation, which 

ensures consistency of the merged models with prior geological information by honoring the 

conditional data and variogram model(s). The conditional probability P{A|C}is obtained by 

the gradual deformation method proposed by Caers (1999). The prior probability of 

permeability at any location in the reservoir P{A} is iteratively perturbed using a deformation 

parameter to yield the probability P{A|C}. The criterion for perturbing the deformation 

parameter is the best match to the available dynamic data. Subsequent to merging the two 

conditional distributions, new geostatistical realizations sampled from that posterior 

probability distribution reflect better the observed dynamic data while honoring the prior 
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geological information. The residual uncertainty in the history matched models and the extent 

of the CO2 plume can be assessed through multiple realizations.  

A synthetic example 

First, the approach is demonstrated through a synthetic example where the flow path of CO2 

is deviated by large-scale permeability barriers. The objective was to infer the presence of 

those barriers by using injection well pressure to calibrate the initial models, and thereby to 

detect the deviation of the CO2 plume from the initially predicted path. Figure 1 shows the 

reduction of the error in the estimated CO2 saturation from the prior to the posterior set of 

realizations. In a second synthetic example, high permeability streaks diverted the CO2 plume 

beyond the anticipated region. The presence of the streaks was captured by the final set of 

models. The results from these synthetic examples called the attention of the operators of In 

Salah, the largest on-shore CO2 sequestration project, for the implementation of Pro-HMS to 

calibrate the available prior geologic model. 

InjectorInjector

InactiveInactive

InjectorInjector

InactiveInactive

InjectorInjector

InactiveInactive

InjectorInjector

InactiveInactive

 

Figure 1: Comparison of the mismatch in the predicted CO2 saturation from the prior set of 

realizations to the posterior set of realizations in the synthetic example 1. 

A field example 

The Krechba gas field is part of the In Salah project in Central Algeria. The structure is an 

anticline with natural gas at the top and saline aquifer down-dip. The injected CO2 from one 

of the injectors showed a preferential migration which was contrary to the expected direction 

of migration and arrived at a suspended appraisal well much faster than was expected. This 

was attributed to some high permeability fracture pathways enabling the rapid migration of 

the CO2 plume. Using the Pro-HMS algorithm in its original form failed to reproduce any 

high permeability features in the final model, since matrix permeability influences the plume 

migration differently from the directional fracture permeability. Hence, we applied a two-step 

approach to the history matching problem, creating a final model of only matrix permeability 

in the first step and overlaying this with high-permeability features in the second step, both 

steps being conditioned just to the injection well pressures. The final model successfully 

predicted the presence of the hypothesized heterogeneity features. The real application of this 

process however would lie in its ability to predict the preferential direction of migration 
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before there is any evidence for the same. So, we tested the method using injection data only 

till a time before the plume arrived at the appraisal well. We found that the final model 

created was still able to predict the presence of the high permeability feature between the 

injector and the appraisal well (as shown in Figure 2), and reproduce it over multiple 

realizations.  

 

KB-5KB-5

 

Figure 2: Final realization of permeability at Krechba, predicting the presence of the high    

permeability feature between the injector (KB-502) and the appraisal well (KB-5) 

Conclusion 

In conclusion, this methods allowed us to integrate dynamic and static data in the process of 

updating the conditional probability P{A|B,C}. As a result, the final model(s) yielded better 

predictions of the migration of the CO2 plume, thus providing a cheap alternative for 

monitoring the fate of injected CO2 in the subsurface aquifer and for initiating remedial 

action in the event of unexpected migration pathways. 
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Abstract 
National and regional ground and remotely sensed surveys have become standard practice in 

generating large scale spatial databases and coverage maps of soil geochemistry, and regional 

geophysics. These are used for a wide range of applications comprising geological and soil 

mapping (e.g. organic soil carbon: see Rawlins et al. 2009), economic prospecting for mineral 

deposits, environmental studies (including national estimation of elemental soil concentrations 

for assessment of potentially harmful implications for health [Appleton et al. 2008]) and 

prediction of the soil provenance for forensic purposes (Lark et al. 2008). Different applications 

are based on the assumption that properties measured in the ground and airborne surveys are 

directly related to different aspects of the region such as underlying geology, superficial deposits 

and soil types. In all of these applications, assessing the baseline characteristics and spatial 

variability of the variables measured in the ground or airborne surveys is fundamental if accurate 

regional or national estimations are to be generated. The spatial variability or continuity depends 

on the distribution of the soil geochemistry or geophysical attribute. The assumption may be that 

spatial variability can be assumed to be similar within similar parent rock or soil types depending 

on the level of discontinuities such as faults within a certain area. Geostatistics provides a means 

through the variogram to investigate and quantify spatial correlation. This research investigates 

the use of variography to estimate local scale spatial variability in radiometric data generated by 

a regional remotely sensed geophysical survey flown in 2005 and 2006 as part of the Tellus 

project, GSNI. The survey collected information on naturally-occurring potassium (K), uranium 

(eU) and thorium (eTh), along with man-made radionuclides with an effective sample depth of 

30cm (in bedrock). Survey lines were spaced 200 m apart and orientated NNW or SSE with a 

flying height of 56 m in rural areas and 240 m over urban areas. A subset of the radiometric data 

from the airborne geophysics survey was used to investigate local spatial variability and 

compositional differences in the Palaeogene acid intrusive rocks (granites and minor felsites) 

comprising the Mourne Mountains located in the SE of Northern Ireland. This area was selected 

because the rocks have relatively high K, U and Th contents and as result the effect of superficial 

peat deposits attenuating gamma rays may be minimised.  
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The granite intrusives of the Mourne Mountains cover an exposed area of approximately 150 sq 

km. The emplacement comprised successive stages of injections of acid intrusive creating five 

distinct granites: a feldspathic hornblende-granite, G1, a quartz-rich granite, G2, an aplitic fine-

grained G3, a pink granite G4 and a late stage fine-grained micro-granite or granophyres G5. The 

results shown (Fig. 1) are for all radiometric data (total counts).  

 
Figure 1: Omnidirectional variogram modelled for total radiometric data. Ordinary kriged 

mapped output for all radiometric data using coefficients from modeled variogram. The 

successive stages of intrusions, G1 to G5 are identified.  

 

Estimation of the variogram was undertaken in order to investigate the spatial variation of 

radiometric signal across the granitic intrusives of the Mourne Mountains.  The variograms were 

produced using Gstat (Pebesma and Wesseling 1998). A mathematical model was fitted to the 

experimental variograms using the weighted least squares functionality of Gstat. The mapped 

kriged map (Fig. 1) indicates spatial variability across the Mourne complex. Although some of 

the dark patches reflect peat cover and the sinuous water body of the Silent Valley Reservoir, the 

output suggests variability in the radiometric data also may be attributed to variability in 

chemical composition of the acid intrusives. The radiometric data were selected and analysed on 

the basis of chemical composition related to the successive stages of intrusion. The 

omnidirectional variograms for the quartz-rich granite, G2 and the aplitic fine-grained granite, 

G3 are shown in Figure 2. The modelled variogram (Fig. 2a) of the G2 granite data indicates 

periodicity which may be related to felsites intrusives. A nugget value indicates that there is 

spatial variability at a resolution finer than the scale of investigation of the airborne survey. The 

modelled variogram ranges indicate correlation distances from approximately 1 to 5 km. The 

modeled variogram for the fine-grained G3 granite suggests that the airborne survey has been 

successful in determining the spatial variability of the G3 granite. The range values indicate 

shorter correlation distances from approximately 0.5 to 1.7 km. 
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Figure 2: Omnidirectional variograms modelled for total radiometric data for the instrusive 

stages G2 and G3. 

 

 Further analysis involves the use of individual radioelements, eU, eTh and K to use the spatial 

variability of high eU and eTh relative to K to investigate if the compositional differences of the 

acid intrusive rocks can be identified from the airborne radiometric data. 
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Abstract 

In geosciences, it is common to image a target property using indirect low-resolution geophysical 

imaging data. The task to down-scale low-resolution indirect data to the appropriate target scale 

is not trivial. Here, we propose to use a parametric texture model to obtain a statistical 

codification between high and low-resolution geophysical images. Wavelet coefficients obtained 

from both high and low-resolution tomographies of an analogue model are interpolated into a 

kernel. The wavelet coefficients of the high-resolution target porosity are generated using a 

Bayesian simulation of the wavelet coefficients from the measured velocity tomography and the 

interpolated kernel. High-frequency image structures are then generated to fit the statistical 

properties of the porosity analogue wavelet coefficients. The resulting inverse-transformed high-

resolution porosity field shows high correlation with the known synthetic porosity model. 

 

Introduction 

Quantitative multi-scale porosity and hydraulic conductivity modeling is an important issue for 

groundwater characterization (Robinson et al., 2008; Srivastava, 1995). However, conventional 

data, i.e. well and pumping tests, does not permit to model the spatial continuity of the 

hydrogeological fields at the appropriate scale. In geosciences, it is common to image the spatial 

continuity of a target property using indirect low-resolution geophysical imaging systems. The 

task to down-scale low-resolution indirect data to the appropriate property target resolution is not 

trivial. In this study, we expand results from Portilla (2000) to obtain a statistical codification 

between high-resolution porosity analogue and low-resolution ground penetrating radar 

tomographic analogue, in order to simulate high-resolution porosity fields between two wells at 

the measured site. 

 

Data and methodology 

Two synthetic porosity fields were generated from two numerical representations of a sand 

deposit. From the two images, electrical property fields are calculated using known petro-

physical relationships. Numerical simulation of a GPR tomography was done on both fields 
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leading to low-resolution electromagnetic velocity images of the corresponding porosity fields. 

One of the two fields will serve as a numerical analogue whereas the other is assumed to be the 

measured synthetic model. A steerable pyramidal wavelet-based parametric texture model 

(Simoncelli and Freeman, 1995) is applied to both analogue images (low-resolution GPR 

tomography and high-resolution porosity), as well as measured GPR tomography image. Figure 

1 shows the kernel map from wavelet approximation coefficients of both analogue images. 

 

 

Figure 1: Kernel of the analogue low-resolution GPR and the analogue high-resolution wavelet 
approximation coefficients. 

 

The kernel will serve to convert the measured low-resolution GPR wavelet coefficients in high-

resolution porosity wavelet coefficients. More specifically, for each low-resolution GPR wavelet 

coefficients, a probability distribution function (pdf) of high-resolution coefficients is extracted 

from the kernel. The simulated high-resolution porosity wavelet coefficients are randomly 

generated from that pdf. Back-transform parametric texture synthesis of these random 

coefficients includes a simulated annealing which objective function honors both analogue 

wavelet coefficients and synthetic bore-hole data statistics. This method reproduces high-

resolution textures of the target image as well as bore-hole data statistics (Figure 2). A loss of 

information can be seen with the low porosity lenses located on top left corner of the target 

porosity field and with the texture of lower zones.  
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Figure 2: a) normalized target porosity field, b) normalized simulated porosity field, and c) 
measured GPR tomography (m/ns). 

Conclusion 

The proposed method enables high-resolution porosity field simulation from low-resolution 

information using a steerable pyramid. The main limitation of the method, inherent to training 

image-based algorithms, is in the construction of the analogue with similar wavelet statistics as 

the field under study. The method in not limited to geophysical radar data and can be extended to 

multivariate geophysical attributes. 
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Those who are not mute in their souls could draw an intriguing analogy between Jim Morrison’s 

simile that “There are things known and things unknown and in between are The Doors,” and 

Parmenides’ metaphor of “The Gates of Night and Day.”  In both cases, the role of the 

doors/gates is to offer a critical link between the unknown (world of ignorance) and the known 

(world of knowledge and truth).  Mutatis mutandis, the goal of scientific inquiry is to crack the 

doors/gates connecting what is known with what is unknown about aspects of the human 

environment. 

 Viewed in the milieu of scientific inquiry, spatiotemporal geostatistics (STG) seeks 

mathematically rigorous and physically meaningful representations of in situ environmental 

systems under conditions of incomplete knowledge.  The study of such systems is an 

increasingly complex matter that requires the collaboration of a variety of disciplines.  Notions 

like random field, variogram, kriging, entropy, sysketogram and Bayes, inter alia, are suspended 

in STG’s language.  All these are formal and often powerful tools of problem-solving.  Yet, no 

quantitative toolbox has any chance of real success, unless it is able to function in a broader 

context that integrates sound scientific methodology and substantive epistemological thinking 

and, on occasion, solid societal awareness.  Accordingly, STG focuses not only on how a 

solution works (operational component), but also on why the solution works (substantive 

component), so that it can translate a general vision into an operational framework useful in real 

world problem-solving.  STG is based on the general methodology of Epibraimatics that fuses 

epistemic principles of distinct fields to develop action-based mathematics for the solution of in 

situ problems.  This methodology is schematically summarized by the following representation:     
Localized brain

activities

 
 
 
→

Mental

functions

 
 
 
→

Fundamental 

postulates

 
 
 
→  

Mathematical 

operators

 
 
 
→ Problem Solution.  

Mental functions emerge from brain activities in a way that reflects an adequate understanding of 

the dynamics of human nature.  These functions subsequently lead to certain postulates that 

represent their essential features as close as possible.  The postulates are finally translated into a 

set of mathematical operators used in integrative problem-solving.  The representation above 

hints at a symbiosis of elements from brain science, neuropsychology, philosophy, linguistics, 

and mathematics within the contemplated solution space that promotes a twofold viewpoint: the 

concrete and the abstract.  To understand both abstract concepts and concrete methods, an 

investigator must be able to consider them from different perspectives, and to interpret and 
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connect them to related concepts and methods. 

 The representation above forms the nucleus around which STG is developed.  Stochastic 

reasoning underlines the conceptual and methodological framework of STG, and its formulation 

has a mathematical life of its own that (a) involves scientific inference in terms of physical law-

based spatiotemporal dependence models, uncertainty functions, and stochastic logic 

conditionals; and (b) accounts for the multidisciplinarity of in situ problems, the multisourced 

uncertainties characterizing their solution, and the different thinking modes of the people 

involved.  At any phase of its development, STG is expected to possess sufficient structure 

(theories and mathematical formalisms), with previous successes built into this structure, and 

guiding methodological principles that can encompass the different disciplines and generate new 

advances; and the solution of in situ problems will emerge by means of a dialectic between the 

problem space and the investigator (the dialectic may guide the investigator on how to organize 

and transform the problem space, revise the solution plan in light of new knowledge, discard 

elements that lead to dead ends and, when necessary, break out of the shackles of mainstream 

thinking and seek a fresh perspective).  One implementation example of the methodological 

representation above in the case of space-time analysis and mapping is as follows: 
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→
  

dχχχχ∫ (g − g) fG (µµµµ , g) = 0

dχχχχ ξξξξS∫ fG (µµµµ, g) − A[ fK ( p)]= 0

 
where X p represents random fields, p  denotes the space-time domain, ΩG , ΩS , g ,   ξξξξS  are (core 

and specificatory) knowledge-based operators and vectors, fKB  are the associated probabilities, 

IG , ΨK  express space-time information and adaptation measures, µµµµ  are significance vectors, and 

A is a normalization functional.  In real world applications STG modelling is conceived as a 

network of data bases, theories, beliefs, purposes and thinking modes in which any string in the 

net pulls and is pulled by the others in an interconnected way that can change the configuration 

of the whole.  Applications involve a variety of fields such as environmental assessment, human 

exposure, health effects, risk analysis, TGIS, epidemiology, and medical geography. 

 The phase of Decadence characterizes every societal aspect (science, education, politics, 

economics, and culture).  In higher education and research, e.g., one witnesses what is called an 

unholy alliance of financial corporatism and radical postmodernism (undermining tradition, 

knowledge, language and achievements of the past; promoting nihilism, and seeking to satisfy 

lower needs).  In industry and institutionalized development the so-called corporate geostatistics 

has emerged in the tradition of Mr. Grandgrind’s teachings in Charles Dickens’ novel “Hard 

Times.”  Ubiquitous self-appointed expert practitioners, petulant and critical, protest against any 

kind of intellectually challenging theories, abstract thinking, contemplative analysis, and the like.  

Such peevish criticism is anything but practical, of course.  By now it is widely accepted that 
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many of the simplistic and pseudo-practical techniques routinely used in corporate geostatistics 

lack methodological continuity and maturity, are not interrelated in a way that can offer a sound 

body of knowledge, and refer to situations with no scientific substance.  Sometimes, it may be 

true that self-styled “bottom-line” and “no-nonsense practicality” methods are classic throwaway 

lines with a pleasant populist tinge that satisfy the “limited attention span” requirement.  Yet, the 

shadow epistemology underlying such sound bites and slogans is deeply unsatisfactory and 

inefficient, ignoring the basic principles of space-time change and consistency (physical and 

logical) between the different information sources.  The same epistemology de-emphasizes the 

quality of knowledge in favor of satisfying the need of the “quick and dirty” solution by which 

knowledge is encumbered and to which it is subordinate.  In the end, just as the deceitful 

promises of “no-nonsense practicality” and “quick results” characterized the era of the financial 

corporatism bubble, the same promises have marked indelibly the fate of the corporate 

geostatistics bubble. 

 In light of the above, the consideration of Decadence and its effects is essential in the 

realistic study of environmental problems and their sustainable solution.  Indeed, the broad 

context within which the problems emerge can affect their solution.  The STG inquiry needs to 

integrate sophisticated technical tools and physical understanding with philosophical thinking 

and sociological analysis.  Only by interpolating between the full range of disciplines (including 

mathematics, physics, neuropsychology, philosophy, history, and sociology) and the associated 

thinking modes the scientists can arrive at a satisfactory account of problem-solving, and be able 

to distinguish between a technically complete solution, and one that has social impact.  To call a 

spade a spade, in a time of Decadence a thinker needs to be both within things and outside them; 

to develop the capacity to stand back from everyday experience and gain a broader problem-

solving view.  STG problem-solvers should not be isolated within the strict boundaries of 

technical expertise, but possess a wide educational background and constant awareness of the 

broad context (social, political, economic, and cultural) within which they operate.  In this way 

they can be more valuable to their scientific fields, and, also, more useful to the public at large.  
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Amongst the many practices that exist for managed aquifer recharge, infiltration of water from 

the surface of artificial ponds is a viable option (e.g. Boewer, 2002; Jha et al., 2009). The design 

and long-term maintenance of these facilities depends on the proper assessment of the 

characteristic times of water residence within the ponds. These are essential to predict the 

quantity and the quality of the water volumes recharging the water.  Characteristic times are 

directly related to the infiltration capacity of the soil in which the ponds are built. This property 

depends on the local geology, which is typically heterogeneous, and on kinetic physical, 

chemical and biological clogging processes on the run. The assessment of the initial infiltration 

capacity can be prohibitively expensive and time consuming, or even technologically unfeasible. 

Also, the exploration scales of these tests are limited (using traditional infiltrometers) to 10
-1

– 

10
0

 m
2

. A spatial correlation between these primary values needs a sufficient number of initial 

sampling zones. In this sense, we explore an alternative way to assess the spatial variability of 

the infiltration capacities of soils using free satellite images. We assume that the color of the 

image pixels can be correlated to the hydrodynamic characteristic of the soil. Provided some 

premises are fulfilled (like the monotonic behavior of the interpolation model), we analyze the 

RGB raster to get exhaustive secondary information of the desired variable. In this sense, a 

correlation (variogram) model can be evaluated to model the spatial structure of the image.  We 

tested our method in a 42 m x 100 m portion of an artificial aquifer recharge pond in the 

Llobregat delta, close to the Barcelona (Spain) (fig. 1). The rectangule in fig. 1 has a resolution 

of 326 x 730 pixels. Field measurements via double-ring infiltration tests in specific locations 

within the pond were satisfactorily correlated by a logarithmic trend to the pixel intensities of the 

Google Earth high resolution image available on the Nov. 15
th

, 2007. The correlation exists in all 

three color bands (Red, Green and Blue) of which the Google Earth capture is composed (Fig. 2 

shows only the red band correlation). The spatial variability of the pixel values is fully described 

at the pilot area. We observed that the stationarity is reached within the test area; a bidirectional, 

multiple-structured model (fig. 3) fits the experimental variogram. We cokriged a map coupling 

the primary information from the infiltration datasets to the pixel values using a Markov model 
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(to avoid filtering effects of the density of the secondary variable with regards to the primary 

one).  

The analysis shows that our predictions of the maximum infiltration rates (calculated mean of the 

cokriged map: 3.72 m/d) is close to the actual observations of the local water agencies and public 

administrations (about 3.6 m/d).  This method could in principle be applied to other fields (i.e. 

agriculture, groundwater modeling, water management), as a way to quickly predict overall 

hydraulic properties spanning various scale in an inexpensive manner. Following the example of 

recharge ponds, for instance, the design of a network of new facilities can be performed 

developing stochastic simulations around the test area (fig.4), when the correlation is found to be 

stationary. The new ponds can be given specific expected characteristic times of water residence, 

depending on the pond positions; thus, specific management can be adopted for each of the new 

ponds (like inflow discharge rates or biological and chemical treatments of the water).  

 

 

Figure 1: Red band of the studied portion of the image. Infiltration test sites are shown (S1-S9); 

C1 to C3 indicate other excavated pits locations. The size of the rectangle is 42x100 m
2  

 

 

 

                                         

                    

 

 

 

 

 

 

 SR (m/d)  

Figure 2: Correlation between pixel values and seepage rates in the red band.  

Equation of the line:  

Pixel Value = 23.303Ln(SR) + 149.38  

R
2
 = 0.8659 

Red Band 
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Figure 3: N-S and E-W variograms of the studied image (experimental and model are depicted). 

The lag distance is expressed in pixels (1 m ~ 7 pixels)  

 

 

Figure 4: A single realization of a new area (4 times bigger than the original testing area), 

conditioned to the initial map and using the spatial structure described by the 

variogram (see fig. 4) 
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Albeit upscaling flow and transport has been disregarded by some on the basis of increasing 

computer capabilities, there is always a discrepancy between the scale at which we can 

characterize the medium, and the scale at which we can run our numerical codes, rendering 

upscaling necessary to transfer the information collected at the fine measurement scale into a 

coarser computational scale well-suited for modeling. 

In the current work, motivated by prior analysis, we follow the study of Fernandez-Garcia et al. 

(2009) and extend proposed transport upscaling method using multi-rate mass transfer into three-

dimensional highly heterogeneous formulations, coupled with the elaborated interblock 

Laplacian with skin hydraulic conductivity upscaling method to more accurately preserve the 

memory in space compared with block simple Laplacian technique. Additionally, unlike 

previous studies that focused primarily on the realization-by-realization match, as is the intent of 

existing hydraulic conductivity upscaling techniques, the present study is characterized by an 

attempt to ensemble level upscaling to achieve the agreement of statistics of transport 

characteristics within two scales. Moreover, the propagation of solute transport associated with 

the uncertainty was further evaluated in the upscaling processes. 

Consider a synthetic three-dimensional confined aquifer under a uniform, natural-gradient flow 

condition, serving as the reference to illustrate the effectiveness of upscaling scheme on flow and 

transport. The variance of natural logarithm hydraulic conductivity is set with value of 4.0. 

In the fine scale, the five-point block-centered finite-difference groundwater flow model 

MODFLOW 2000 was employed to solve the fine scale flow. The velocity crossing the interface 

are calculated, and then were utilized in the random walk particle tracking code RW3D 

(Fernandez-Garcia et al., 2005), which was used to solve the fine scale transport equation since it 

is free from numerical dispersion and computationally efficient.  In the coarse scale, the 

nineteen-point block-centered finite-difference groundwater model FLOWXYZ (Li et al., 2010) 

was employed to solve the coarse scale flow equation. Again, the RW3D was used to solve the 

coarse scale multi-rate transport equation based on the methodology presented by Salamon et al. 

(2006). 

With regard to the flow upscaling, the results clearly show that the interblock Laplacian with 

skin approach is better to reproduce the fine scale flow compared with the block simple 

Laplacian method in highly heterogeneous media.  For transport upscaling, we can see that the 

breakthrough curves are reproduced very well (Fig 1).  We further evaluate the uncertainty by 
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calculating the spread in the ensemble of accumulative breakthrough curves at all the control 

planes.  For the late time, it is evident that the use of double-rate mass transfer model 

outperforms the primitive model (Fig 2). 

In this study, we have presented and demonstrated a new algorithm for the transport upscaling to 

avoid the computational burden in three-dimensional highly heterogeneous media. This work is 

an extension of the work by Fernandez-Garcia et al. (2009) in two dimensions. One of the critical 

features of this method is that, it uses an elaborated Lalpacian with skin approach to reproduce 

the flows instead of the simple Laplacian scheme, and the multi-rate mass transfer process is 

used to compensate the loss of information in the subgrid during upscaling. Not only do the 

hydraulic conductivities upscaling underestimate the late arrival time of breakthrough curves, it 

also severally underestimates its uncertainty. The loss of uncertainty can be compensated by the 

mass transfer model allowing solute mass exchange between high-permeability and low-

permeability zones. 
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Figure 1:  Comparison of  fine scale accumulative breakthrough curves with those obtained by 

the upscaled transport models. (primitive: only flow upscaling) 
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Figure 2:  Ensemble travel late times as a function of travel distance, and comparison of fine 

scale simulation with those corresponding to the upscaled models (primitive: only flow 

upscaling). 
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INTRODUCTION 

Monitoring data of piezometric heads in a watershed gives information about the dynamic of 

the aquifer domain in time and space. Time series modelling is an elegant way to treat 

monitoring data without the complexity of physical mechanistic models. Also, the stochastic 

component of the model allows us to account for model uncertainty. Simple transfer function-

noise models have been successfully applied to describe the dynamic relationship between 

precipitation surplus and water table depth in several studies (Tankersley and Graham 1994; 

Van Geer and Zuur 1997; Knotters and Van Walsum 1997; Yi and Lee 2003; Von Asmuth 

and Knotters 2004). The transfer function-noise models can be calibrated to a set of time 

series observed in various wells in an area. Next the time series model parameters or the 

model predictions can be interpolated spatially, using ancillary information related to the 

physical basis of these models (Knotters and Bierkens 2001). In this approach the spatial 

differences in water table dynamics are determined by the spatial variation in the system 

properties, while its temporal variation is driven by the dynamics of the input into the system. 

Aim of this work is to present a combined framework of time series modelling and 

geostatistics applied to groundwater monitoring data to predict risks of extreme water table 

depths in time and space. 

 

PREDICTING RISKS OF EXTREME WATER TABLE DEPTHS IN TIME AND 

SPACE 

The PIRFICT-model is an alternative to discrete-time transfer function-noise models where a 

block pulse of the input is transformed to an output series by a continuous-time transfer 

function (Von Asmuth et al. 2002). We consider this model because it not only enable us to 

account for model uncertainty, but also has physical based parameters given from the 

response function that models the dynamic relationship between precipitation surplus and 

water table depths. The simulation procedure of the PIRFICT-model is described in 

Manzione et al. (2008). Here, the 5
th
 and 95

th
 percentiles of the simulated water table depths 

are interpolated spatially using Universal Kriging (Matheron 1969; Pebesma 2004). These 
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maps present the water table depths that will be exceeded with 5 and 95% chance in some 

specific date, sampled from the simulated series. The digital elevation model is used as 

ancillary information in Universal Kriging. The aim of using elevation as a covariate is to 

improve the accuracy of the spatial predictions. Also, it can enhance the physical meaning of 

the predictions and yield more plausible spatial patterns. Elevation is physically related to 

water table depths, since it is related to local geomorphology. Areas with relatively low 

elevation and close to drainages present shallow water tables, whereas in areas with relatively 

high elevation and far from drainage devices the water table is deep (Furley 1999). The 

digital elevation model is incorporated as a drift in the spatial prediction model. Let the 

probability of exceedance be given as z(x1), z(x2), …, z(xn), where xi is a two-dimensional 

well location and n is the number of observations. At a new, unvisited location x0 in the area, 

z(x0) is predicted by summing the predicted drift and the interpolated residual (Odeh et al. 

1994; Hengl et al. 2004): 

                                         )(xe)(xm)(xz 000 ˆˆˆ +=                                       (1)  

where the drift m is fitted by linear regression analysis and the residuals e are interpolated 

using kriging:  
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Here, the βk are estimated drift model coefficients, qk(x0) is the kth external explanatory 

variable (predictor) at location x0, p is the number of predictors, wi(x0) are the kriging weights 

and e(xi) are the zero-mean regression residuals. In this case, for water table depths h, the 

model estimator was formulated as follows: 

                                     )e(x)E(xββ)(xh 00100 +⋅+=ˆ                                         (3) 

where E is the elevation value for each location and e is a zero-mean spatially correlated 

residual. Its spatial correlation structure is characterized by a semivariogram. The results of 

spatial interpolation are evaluated using cross-validation (Chilès and Delfiner 1999). 

 

CASE STUDY: Monitoring water table depths in a Guarani aquifer recharge area 

The study area is an outcrop zone of the Guarani aquifer system, in the municipality of 

Brotas, province of São Paulo, Brazil. The Ribeirão da Onça watershed is equipped with 23 

wells installed in the watershed for groundwater level monitoring (Wendland et al., 2007). 

Water table depths were observed manually every 15 days, from April, 2004 until April, 

2009, totalizing five years (1826 days) of continuous monitoring. These wells were selected 

purposively to cover the range of land uses and hydrogeological domains in the area, in a try 

to characterize the different responses of water table depths in the basin. The filter levels of 

the wells varied with soil depth. Series of precipitation and potential evapotranspiration data 

were available from CRHEA/USP (Center for Water Resources and Applied Ecology of the 

University of Sao Paulo), where climatologic data are collected continuously. These data 

were available from 1974 until 2009 (35 years) with a daily frequency. The watershed is 
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located approximately 1.5 km away from the station. The digital elevation model of the area 

is in a 1:10:000 scale, digitalized and interpolated from topographic maps. 

The resulting maps can be used to evaluate possible risk areas of extreme low or shallow 

water table depths during any period of the year. These are valuable information for decision 

making and water management policies, in order to balance economical and ecological 

purposes in ground water exploitation. The method presented has demonstrated potential for 

unconfined and porous aquifers in Brazil. 
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Model structure, boundary conditions, sources or sinks, and more importantly, parameters like 

conductivity and porosity are necessary input for groundwater flow and transport simulation. 

However, detailed description of the geologic is not available so that we usually have to resort to 

inverse methods. Inverse problem involves integrating the response of the groundwater system, 

such as hydraulic head, flux and concentration of contaminant, to infer the parameters of the 

aquifer. Ensemble Kalman Filter (“EnKF” hereinafter), as one of the Monte Carlo data 

assimilation algorithms, is first proposed by Evensen (1994) and further improved by Burgers et 

al. (1998), and now it is widely applied in such fields as oceanography, meteorology and 

hydrology. 

 

EnKF mainly consists of two steps: forecast the state until the time when the measurements are 

available and then update it by assimilating the observation as follows: 

)(

)( 1

f

tG

f

t

u

t

a

t

f

t

HXZKXX

XFX

−+=

= −  

where f

tX is the state at time t forecasted from the state at time t-1 by the forward transition 

function F which could be the flow equations, KG represents the Kalman gain calculated through 

the ensemble under the criterion of minimizing the error covariance, Z means the observations 

and H maps the forecast into the observations.  

 

EnKF gains more and more attention as a data assimilation technique due to its ease of 

implementation and computation efficiency. However, it also suffers from some drawbacks, for 

instance, its intrinsic assumption of Gaussian distribution and risk of divergence. We focus on 

relaxing the Gaussian constraint by introducing a transformation into the regular EnKF, whose 

performance will be evaluated by a non-Gaussian synthetic experiment characterized by 

curvilinear channels (Fig 1).  
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Figure 1: Reference conductivity field 

 

An ensemble of 100 realizations is generated conditional on the conductivity measurements 

serving as the starting point of the inverse problem (Fig 2). 
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Figure 2: One of the realizations of the initial ensemble and head evolution at node (30, 30) 

where the pink circles indicate the reference 

 

One of the realizations after assimilating head observations using the traditional EnKF is listed in 

Fig 3. We can find that the channel structure is distorted although the uncertainty of head 

calibration is reduced. In other words, EnKF does not preserve geologic structure, which is of 

significance in the subsequent transport simulation (Mariethoz, 2009). 
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Figure 3: One of the realizations of the updated ensemble of conductivity by traditional EnKF 

and head calibration at node (30, 30) 

 

By using a damping factor in the updating equation, we can attenuate the influence of the 

difference between the measurement and the forecast (Hendricks Franssen and Kinzelbach, 
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2008) which will give rise to a mild change to the conductivities. Alternatively, we can employ 

some type of transformation on the conductivities, for instance, a normal score transform. The 

aim of the transform is two-fold: relax the Gaussian assumption and constrain the ensemble to 

the initial structure as well. Updated realizations and the head evolution are plotted in Fig 4. It 

can be found that the channel structure seems more reasonable in comparison with the result of  

regular EnKF (Fig 3) and the uncertainty of flow calibration is reduced compared with the 

unconditional case (Fig 2), indicating that such transformation really improved the performance 

of EnKF. 
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Figure 4: One of the realizations of the updated ensemble of conductivity by EnKF with 

transformation and flow calibration at node (30, 30) 
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This work studies the dynamics of a technical reservoir with liquid radioactive wastes. The main 

characteristic presenting the dynamics of the reservoir is a level at the south end of it. It is a 

location where the reservoir is blocked from the open hydrological system by a dumb. The main 

problem is to estimate if a height of the dumb is enough to prevent an overflow above it. In the 

current work the probabilistic approach is used.  

There is a set of factors influencing on the reservoir’s level: 1) the technical liquid wastes. The 

reservoir is still in use for technical activities. The amount of such income is decreasing during 

last years, but still at a moment it is impossible to stop the release; 2) the weather conditions such 

as precipitation and evaporation at the reservoir surface; 3) exchange with the underground water 

system. It can also be supposed that there is the dependence between the amount of the filtering 

water and the precipitation/evaporation conditions at some territory. All these factors are 

classical components of a water balance equation for a not flowing through reservoir. But very 

high uncertainty in all influencing factors does not allow to construct and to solve an exact 

equation. It leads to probabilistic water balance equation [Ryazantsev & Trapeznikov, 2008].  

Otherwise one can use the learning from data paradigm: the level can be considered as a main 

(primary) value accumulating all knowledge of the process. Thus all dynamics of the process can 

be found in the dynamics of the main value itself. All other available information and knowledge 

can be used as a secondary one.  

The preliminary study of the dynamics of the main value by means of a phase portrait allows to 

indicate a type of a process under study. The process is presented by several stable and transfer 

periods. Application of additional information allows to formulate a purpose starting a transfer 

period, which appears to be a deterministic one – an increase of the yearly amount of the 

technical release. So, the deterministic release component is subtracted from the process.  

Thus the process under study looks as a reduced water balance equation: 

)(HS

Q
H −∆=ϕ ,    (1) 

where ∆H is a decrement of the level, Q  is the technical release, S(H) is the surface of the 

reservoir dependant on its current water level. The analytic relationship between surface S and 

the measured level H was presented in Mokrov et al, 2009. 

The process ϕ can be considered as a stochastic process with a deterministic, for example a 

linear one, trend: 
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11det ,...)( −− +Ψ= ttt ψϕϕ . 

003117.0457.0det −=Ψ tϕ .    (2) 

The simplest way to deal with the residual component is to treat it as an independent normally 

distributed random values. The parameters of the normal distribution can be obtained from the 

real residual sequence, they are: mean = 0.000024, variance = 0.002. Using such approach one 

can obtain a set of stochastic realizations reproducing the dynamics of the water level and 

estimate the mean value and 95% confidence intervals (Fig. 1).  

 

Figure 1: Prediction of the water level in the reservoir modeling stochastic component as a 

independent normally distributed random values 

 

More likely is to consider the stochastic process ϕ  as one with some hidden periodicity. Thus to 

the deterministic term (2) is added a periodic term containing 23 components: 

( ) ( ) ( )[ ]∑
=

+=Ψ
23

1

2sin2cos
j

jjjjper tBtAt πνπν ,   

where νj are frequencies of the hidden periodicity. The significant frequencies are selected by 

means of a power spectrum after fast Fourier transform. Coefficients for a given frequency are 

estimated by solving linear systems constructed so as to minimize the variance of the estimate. 

The stochastic residuals again are treated as an independent normally distributed random values 

with distribution parameters: mean = -0.000037, variance = 0.00072. 

The other possible approach to deal with the stochastic process ϕ is to take into the account 
weather parameters. It is known that such parameters as precipitation and evaporation are an 

important part of the standard water balance equation. Also precipitation affects the filtering 

component of the water balance. The influence of weather components is not always 

instantaneous (within the month), for example winter precipitation influences water level during 

the spring period.  

The process ϕ presents periodic features, the same features are found in the auto-correlation and 

cross-correlation with a value characterizing an amount of water in the month (precipitation – 
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evaporation). But for close temporal distances this correlations can be modeled by spherical type 

of variogram (cross-variogram) with the following parameters: variogram sill = 0.0022, 

variogram range = 3.6; cross-variogram: sill = 0.0012, cross-variogram range = 4.5. 

So, the stochastic component can be obtained as a geostatistical stochastic simulation with 

parameters for simulation estimated by co-kriging: 

( ) ϕµαγλσαϕλϕ ++=−+= ∑∑∑∑
==
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kiki jgkEP , 

where P means precipitation, E means evaporation, γ is a model of variogram and g is a model of 

cross-variogram. Coefficients ( ϕµαλ ;4,3,2,1:;3.2,1: == jk jk ) are obtained by solving 

corresponding system of equations. Stochastic simulations are performed using direct approach 

proposed in Soares, 2001.  

The geostatistically based approach looks more sophisticated as for predictions it requires 

additional information on unknown weather parameters. But from the other point of view it 

allows considering different weather scenario, for example a consequence of high water years.  

Weather components can be introduced in the method with periodic component too. The residual 

ξ from formula (3) appears still to store some correlation with water amount. But here the 

geostatistical approach is not helpful because residuals ξ(t) are not correlated. The correlation 
can be incorporated directly as a part of the deterministic component: 

1det1det )1()()( −− +−Ψ+−Ξ+Ψ= tpertttt tEP ζϕϕ . 

All proposed in this work approaches allow to obtain different kinds of estimates, including 

probabilistic estimates. The detailed comparison of obtained results will be discussed. 
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Introduction 

Europeans Framework Directives (2000/60/CE; 2006/118/CE; 91/676/EEC) require the Member 

States of European Union to take actions to achieve a “good” chemical and quantitative status of 

their groundwater resources by 2015. More specifically, Europeans countries have to determine a 

nitrate (NO3) threshold and to identify ground waters where this threshold is exceeded or will be 

exceeded if no actions are undertaken (for instance France lowered down the NO3 threshold to 

40 mg/L). In case of failure to meet these requirements, the concerned countries will have to give 

explanations. 

Together with the Loire-Brittany Water Agency, the BRGM conducted an exploratory study on 

the whole Loire-Brittany basin (157 000 km²). The main objective of this study was to collect 

information about the age of the water and to characterise past evolutions of the quality of the 

ground waters, in order to understand the current state of contamination and to predict (model) 

the possible evolution of the water quality.  

This work involved (i) the determination of water resources age, (ii) collection of nitrate and 

water table level time series, the homogenisation and the verification of these data, (iii) the use of 

statistical and geostatistical tools to determine the state of water resources and the spatial or 

temporal evolutions, (iv) the definition of the typical behaviour and evolution, by comparison of 

piezometric and NO3 signals with available data such as hydrogeological context and agricultural 

practices, (v) the comparison and the explanation of  the whole set of information and data 

available. A quite similar work is currently conducted on the Seine-Normandy basin together 

with the Seine-Normandy Water Agency. This paper focuses on the statistical and geostatistical 

aspects, explaining the data analyses and the obtained results. 

 

Used data  

1,371,655 water table level data spread across 511 time series and 117,056 figures for NO3 

distributed on 7,341 times series, collected between 1945 and 2007, were used in this study. 

Those data came from ADES and ONQES data bases managed by the BRGM or from the DDAS 

(local health agencies). Moreover, agricultural pressures of the year 2000 and 1/1,000,000 

geological maps were used to achieve the study. A limitation of the study was that for a given 
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point it was not possible to have information for both the nitrate time series and the water table 

level time series. 

 

Geostatistical analysis 

From a geostatistical point of view, variograms of water table level and nitrate concentrations 

were calculated automatically on each time series, when the length of the time series was long 

enough. Regarding the piezometric data, variograms were calculated at 2 weeks time scale in 

order to reduce the sampling bias linked to heterogeneities in the measurement time interval. For 

the NO3 concentrations, a 6 months time scale was applied because of the low frequency of the 

measurements. 1,483 experimental variograms (414 for piezometric data and 1,069 for the NO3 

data) were automatically fitted. Fitted models were composed of a combination of specific 

elementary components chosen for their ability to describe the behavior of the signal for the 

characteristic time scales: pepitic, short term and annual component of the signal as well as 

pluriannual trend. Consecutively, a hierarchical ascending classification (HAC) was conducted 

on the parameters of the fitted models. Thanks to this HAC, zones with a homogeneous nitrate 

and water table variation behaviour were defined. 90 zones resulted of the combination of the 

HAC with the agricultural pressure and the geological data. Correlations between NO3 content 

and piezometric variations were studied for the spatially linked time series. We highlighted some 

positive correlations (with or without temporal gap) but also some not correlated signals.  

 

Statistical tests to determine trends analyses  

Trends were determined based on nitrate concentration time-series. Only waters sources for 

which there were at least 10 measurements and where there was not evidence of a natural 

denitrification (indication of a captive aquifer) were considered for these analyses. Therefore, 

2,975 time series were selected. The non-parametric Mann-Kendall (MK) test, a robust statistical 

trend detection test, was used to estimate the trends of past evolutions in nitrate concentrations. 

The trend analyses were partitioned, since 1970, by decades in order to detect possible trend 

reversals along the studied period. A global trend was also determined for the 1970-2007 period. 

When the confidence level of the test was at least 95%, the slope of the trend was calculated (for 

this condition 645 points were studied). Following the Water Framework Directives, trends were 

also spatially represented using the Kendall Regional (KR) test. 31 zones (over 90) were so 

characterized. The KR test consists in the creation of a virtual well defined as the grouping of all 

the wells contained in the same zone. This exercise was conducted based on the annual averages 

of the Nitrate concentrations. 

 

Preliminary results  

Although the study is still ongoing, preliminary results indicate that trends evolution in nitrate 

concentration are directly depending upon the time and the geographical location. For some 

given zones, there is a clear trend reversal (decrease in nitrate concentration after a period of 
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increment) whereas in other zones there is a continuous increase. Globally, the highest nitrate 

concentrations are observed in relatively recent waters. Unfortunately, there are no very recent 

waters to establish if recent changes in agricultural practices have induced a decrease in nitrate 

concentration. In the case of trend evolutions showing seasonal variations, there is a correlation 

with the water table levels, associated or not with temporal gap. Given that there were no 

available maps of temporal evolution of the agricultural impact, it has not been possible to 

separate nitrate signal associated with the piezometric variations to the one associated with the 

agricultural practices. In this study a new methodology was assessed for the characterization of 

the trend evolution of the water resources at the scale of a large basin. This study also revealed 

several limitations: poor quality of some data, lack of accurate information on the aquifer and its 

state (captive or not), low frequency of nitrate measurements, bias induced by censoring (the fact 

that very often wells are closed and no more monitored when nitrate concentration exceeds a 

given threshold). The high volume of the data to be treated led us to develop several automatic 

procedures for statistical or geostatistical calculations. However, we still need to develop 

complementary tools to facilitate the work. For example the calculation and the automatic fitting 

of the cross covariance between nitrate and piezometric signals, or the automatic determination 

of the pairs of NO3/piezometric wells that can be spatially linked. Beyond the characterization 

aspect, it remains to analyze and to explain the causes of the nitrate evolutions : a decrease of the 

nitrate concentrations observed in certain points can be explained either by a decrease of the 

water table level or by a previously decrease of the agricultural pressures or by a combination of 

these factors. The knowledge of the times and the modalities of the nitrate transfer from the 

unsaturated zone towards ground waters is a poorly known key mechanism which highly needs 

to be investigated and understood. 
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The unsaturated zone is a major control on groundwater recharge and the input of contaminants 

to aquifer systems. Therefore, understanding flow in the unsaturated zone has important 

implications for determining the quality and availability of groundwater resources. This is 

particularly true in arid regions such as the southwestern United States, where the unsaturated 

zone may reach hundreds of meters in thickness.   

Wherever the unsaturated zone is geologically heterogeneous, spatial variation in the hydraulic 

properties of constituent soil and rock may significantly affect the pathways of subsurface flow 

and contaminant transport (Wolfsberg et al., 2004). In the thick unsaturated zones characteristic 

of arid regions, large depositional features may form extensive, connected units with similar 

hydraulic properties, potentially influencing flow over long distances (hundreds to thousands of 

meters). In these regions, characterizing the geologic heterogeneity of the unsaturated zone can 

be a critical step in determining the location, rate, and spatial distribution of aquifer recharge, as 

well as the extent of effects from groundwater contamination.  

Because of the limitations and incompleteness of geological and geophysical data used to 

characterize subsurface flow environments, modeling geological heterogeneity necessarily 

introduces uncertainty into predictions of subsurface flow and contaminant transport. Hydrologic 

modelers often adopt a single deterministic model of the subsurface geology, neglecting the 

uncertainty that results from incomplete geological data.   

In our approach, we characterize the uncertainty in subsurface flow and contaminant transport 

predictions that result from the stochastic modeling of the subsurface geology.  We generate 

multiple realizations of heterogeneous geology to represent the possible spatial variation of 

geology in the subsurface.  We then simulate flow and transport for each realization, and 

measure uncertainty by tabulating the rates of recharge and contaminant mass flux to the water 

table.  

We apply our approach in Yucca Flat, formerly a site for the underground testing of nuclear 

weapons.  Yucca Flat is a large, geologically complex basin with a heterogeneous unsaturated 

zone ranging from 150 m to 580 m in thickness (Stoller-Navarro, 2006).  Our study region is a 

5km east-west, 7km north-south, 760m deep volume in the north-central portion of Yucca Flat.  

Using a procedure developed by Boucher and Phelps (2009), a series of 25 realizations of 
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heterogeneous subsurface geology are generated using training images developed from 2D 

geologic maps combined with 1D drillhole data (see Figure 1).  The variability in the flow and 

transport predictions between each realization are a result of spatial variations in the 

permeability, which is assigned according to the sedimentary facies type generated in each 

realization (Figure 2).  

Flow and transport are simulated using a 3D numerical model developed using the SUTRA 

software (Voss 1984).  This model simulates both saturated and unsaturated flow.  Contaminant 

transport is modeled using a conservative, non-reactive, non-sorbing tracer released continuously 

from 94 point sources, each corresponding to the working point of an underground detonation 

site.  All 94 point sources are located above the water table (Hale et al 1995).    

Flow and transport simulations consistently show that contaminants are initially transported 

downwards through the unsaturated zone and are then transported laterally once reaching the 

water table.  However, the volumes, rates, and pathways of fluid flow and contaminant transport 

vary between each realization.  Even over periods as short as one year, the predicted boundary of 

the modeled contaminant plume in the unsaturated zone can vary by hundreds of meters in both 

the horizontal and vertical dimensions between individual simulations (Figure 3).  

Contaminant transport predictions appear to be sensitive to the spatial variation in the 

permeability assigned to specific sedimentary facies types. Over longer periods of time, the 

spatial variation in permeability and other hydraulic properties may magnify differences in 

contaminant transport between individual simulations as transport becomes affected by large 

depositional features over longer distances.  These results suggest that estimations of the 

contaminant plume boundary over longer periods of time (hundreds to thousands of years) may 

be affected significantly by uncertainty in the geological model.   

A natural next step would be to incorporate spatial variability in other transport parameters, such  

as dispersivity and porosity.  Further research is also needed to investigate flow and transport 

over longer periods of time for long-term risk assessment.  Such an analysis would provide an 

uncertainty measurement that can be used to guide risk analysis and decision-making for 

remediation design, groundwater monitoring, water resources management, or the construction 

of high-hazard facilities.   
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Figure 1:  Map of surface geology as generated in three separate realizations. 

 
Figure 2:  Map of intrinsic permeability (Nimmo et al, 2009) at the surface assigned to the 

sedimentary facies type generated in three different realizations (corresponds with Figure 1). 

 
Figure 3:  View (from above) of modeled contaminant plumes from 94 continuously-releasing 

point sources within the study volume.  Plumes (blue) represent regions where modeled 

contaminant concentration exceeds 4 ppb (concentration arbitrarily chosen to display the shape 

of the plumes). 
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Hydraulic conductivity (K) is a fundamental parameter that influences groundwater flow and 

solute transport. The spatial distribution of K impacts the groundwater velocity field and hence 

directly influences the advective spreading of a solute migrating in the subsurface. Portions of 

the plume advance more rapidly than the average velocity while in other zones, migration rates 

are slower than the average velocity. This spreading phenomenon is commonly referred to as 

hydrodynamic macrodispersion. 

The objective of the presented work is to use copulas as a novel non-Gaussian stochastic model 

to simulate spatially-correlated random fields of K that fit to real- world K data. The spatially 

distributed non-Gaussian K-fields are subsequently used to conduct a series of numerical tracer 

experiments using a high-resolution groundwater flow and contaminant transport model 

(HydroGeoSphere). Flow and transport characteristics are derived, particularly the rate of change 

of the spatial moments of the evolving contaminant plume. These characteristics are compared 

with those obtained under the assumption that the underlying spatial distribution of K has a 

Gaussian dependence structure, a commonly made assumption. 

Both types of spatial K-fields  were constrained  to have the same marginal distribution, the same 

variogram, the same covariogram, and the same rank correlations (Figure 1). However, both 

types of K-fields do exhibit a different spatial dependence structure when modeled by copulas, 

and thus lead to a significantly different transport behavior. The dispersion tensor, which is 

proportional to the rate of change of the 2nd-order spatial moments of the evolving contaminant 

plume, is different for the Gaussian and non-Gaussian descriptions of spatial dependence (Figure 

2). 

The outlined theory is applied to three-dimensional statistically anisotropic K-data obtained from 

two of the most extensively studied aquifer test-sites. Each site comprises ~1400 samples taken 

along two cross-sections. One site is the Borden, Ontario, aquifer, a modestly heterogeneous 

aquifer. The other site, located near North Bay, Ontario, is comprised of a highly 

heterogeneous glacial deposit.  

In both of these differently deposited environments, non-Gaussian dependence structures of K 

and hence non-Gaussian transport characteristics have been found. 
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Figure 1: Geostatistical measures for 100 realizations of simulated K- fields. Thick lines 

represent arithmetic averages. Blue indicates a gaussian model, red indicates a v- transformed 

Copula model. 

 
Figure 2: Averages of central second spatial moments over time for four different types of 

spatially distributed K-fields based on 100 simulations. 
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Simple average, simple Laplacian, Laplacian with skin and nonuniform coarsening upscaling 

techniques are investigated using, as a reference, a fine scale realization of the hydraulic 

conductivities at the Macrodispersion Experiment site on Columbus Air Force Base  in 

Mississippi (USA). This realization was generated using a hole effect variogram model and it 

was shown that flow and transport modeling in this realization is capable to reproduce the 

observed non-Gaussian spreading of tritium plume. The purpose of this work is twofold, first to 

compare the effectiveness of different upscaling techniques in yielding upscaled models able to 

reproduce the observed transport behavior, and second to demonstrate that careful upscaling of 

the flow model can provide a coarse model in which the standard advection dispersion equation 

can be used to model transport in seemingly non-Fickian scenarios. Specifically, the use of the 

``Laplacian with skin" full tensor upscaling technique coupled with a nonuniform coarsening 

scheme yields the best results both in terms of flow and transport reproduction. 

 

According to the previous study (Salamon et al., 2007), their realization #26 out of 40 

realizations exhibits a similarly anomalous plume as the one observed on-site at 328 days. This 

realization is selected as the reference field in the following upscaling analysis.  

 

Horizontal, depth integrated concentration distributions as well as vertical, laterally integrated 

concentration distributions of realization #26 are illustrated in Fig 2, 3 and 4 using different 

upscaling techniques. The concentration distribution of Fig 4 using nonuniform coarsening 

interblock Laplacian with skin approach is in qualitative good agreement with the fine scale in 

Fig 1, whereas the distribution of Fig 2 and Fig 3 using block and interblock simple Laplacian 

uniform coarsening display an underestimated tailing of solute spreading resulting from poor 

reproduction of the fine scale flow. Particularly, the use of block simple Laplacian method here 

significantly underestimates the contaminant tailing of solute plume. 
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Figure 1: (A) Depth integrated normalized concentration distribution after 328 days for 

realization #26 in the fine scale.(B) Laterally integrated normalized concentration distribution 

after 328 days for realization #26 in the fine scale.  
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Figure 2: (A) Depth integrated normalized concentration distribution after 328 days for 

realization #26 using uniform coarsening of block simple Laplacian upscaling.(B) Laterally 

integrated normalized concentration distribution after 328 days for realization #26 using 

uniform coarsening of simple Laplacian upscaling. 
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Figure 3: (A) Depth integrated normalized concentration distribution after 328 days for 

realization #26 using uniform coarsening of interblock simple Laplacian upscaling. (B) Laterally 

integrated normalized concentration distribution after 328 days for realization #26 using 

uniform coarsening of simple Laplacian upscaling. 
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Figure 4: (A) Depth integrated normalized concentration distribution after 328 days for 

realization #26 using nonuniform coarsening of Laplacian with skin upscaling.(B) Laterally 

integrated normalized concentration distribution after 328 days for realization #26 using 

nonuniform coarsening of Laplacian with skin upscaling. 
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Abstract 

In the framework of the disposal of short-lived low- and intermediate-level radioactive waste in a 

near-surface disposal facility in Dessel, Belgium, additional extensive site characterization has 

been performed in 2008. The gathered data now enclose 388 hydraulic conductivity 

measurements on samples of 8 cored boreholes. Secondary information as grain size analysis, 

porosity, and borehole geophysical parameters was also gathered. In addition, the geology of the 

study area has also been thoroughly characterized by a set of 178 cone penetration tests (CPTs) 

to approximate 50 m depth. This dataset allowed to refine the hydrostratigraphical model of the 

region. The existing groundwater model, based on large-scale effective hydraulic properties, was 

updated accordingly. The next step is a small-scale probabilistic approach 1) to validate the 

current existing deterministic groundwater models and 2) to support design for a monitoring 

network. In preparation for stochastic realizations of the subsurface, a geostatistical analysis of 

the available primary and secondary data is performed. 

Relationships between the borehole logs and the hydraulic conductivity measurements are 

examined. The considered logs are the caliper, gamma ray (GR), a focused electrolog 

(Res_FEL), and long- and short spacing resistivity logs (Res_64, Res_16). These logs are 

continuous, and allow to get some information about the hydraulic conductivity at the depths that 

were not sampled. This is especially interesting for studying the heterogeneity of the different 

hydrogeological units and calculating a representative hydraulic conductivity for a geological 

unit over its entire thickness. The correlation coefficients between the logs and the hydraulic 

conductivity depend strongly on the considered geological formation. For certain 

hydrogeological units, the caliper, gamma ray and resistivity logs show a correlation coefficient 

around 0.6 - 0.7 (Table 1). 

Structural analysis was performed for all the hydrogeological units together. Figure 1 shows the 

variograms and cross-variograms that are calculated using Cressie's robust variogram estimation 

(Cressie, 1993) after standardization of each hydrogeological unit. Spherical models are fitted, 
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and a kriging and co-kriging cross-validation is performed. The method used is k-fold cross-

validation with k ≈ n/2 (with n equal to the number of data points) in a way that the (almost) co-

located horizontal and vertical K-measurements were always left out together (leave-two-out 

cross-validation). The correlation coefficient between observed and predicted values from the 

cross-validation increases from 0.68 for kriging to 0.77 for co-kriging with all the available 

secondary information. 

 

Table 1: Correlation coefficients between logarithmic hydraulic conductivity and secondary 

parameters for the different hydrogeological units. (r: correlation coefficient, n: number of 

points) 

Hydrogeological units 

Quaternary 
Mol 

(Upper) 

Mol 

(Lower) 
Kasterlee 

Total Secondary 

parameters 

r n r n r n r n r n 

Caliper -0.27 12 0.77 39 0.22 68 0.44 25 0.42 144 

Res_FEL 0.04 13 0.45 39 0.09 68 0.61 25 0.28 145 

GR_cps 0.41 12 -0.59 37 -0.13 68 -0.47 25 -0.42 142 

Res_16 - - 0.67 28 0.05 68 0.44 25 0.34 123 

Res_64 - - 0.38 30 -0.33 68 -0.32 25 0.10 125 

 
Figure 1: Experimental variograms and cross-variograms of the hydraulic conductivity and the 

different borehole log parameters and their fitted spherical models. 

 

Subsequently, co-kriging is used to predict continuous vertical profiles of the hydraulic 

conductivity. This allows to detect small contrasting layers which might have been overlooked 

by the discrete sampling of the cores, and are hence not represented in the hydraulic conductivity 

measurements. The presence of contrasting layers is checked by visual inspection of the borehole 
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cores. Effective K-values are finally calculated for each hydrostratigraphical layer from these 

continuous profiles, and compared with the values obtained from the discrete sampling. 

Another source of information is the CPT campaign. This data covers the entire area of interest, 

and would hence be a very usefull source of secondary information. The use of CPTs in 

predicting hydraulic conductivity has already been demonstrated for instance by Tillmann et al. 

(2008). They used several CPT parameters (including gamma activity, bulk and matrix density 

and water content) to predict grain size distributions and calculate the hydraulic conductivity 

from those. The parameters recorded in the current CPT campaign comprise the point resistance 

and the side resistance, which only allows to search for an empirical relationship with 

hydrogeologic parameters. The proportion of point to side resistance is called the friction ratio, 

and is commonly used to make a distinction between different lithological units. Because of the 

mechanical character of these measurements, one might indeed expect a relationship with the 

hydraulic conductivity. Unfortunately, the CPTs and boreholes are not co-located. The horizontal 

distance between the two sources of information is between 7 m and 350 m. Despite this 

drawback, it is however still possible to find a relationship. The point resistance shows the 

highest correlation with the logarithmic hydraulic conductivity. The fitted function has an R-

squared of 0.73 (Figure 2, left). The demonstrated relationship is however only valid over a 

broad range of hydraulic conductivity values (-7.5 to -4.5; 3 orders of magnitude). This is 

probably due to the distance between the CPTs and boreholes. Additional CPTs close to the 

boreholes are necessary to be able to infer small-scale changes. A horizontal pseudo cross 

semivariogram (as defined in Goovaerts, 1997) is finally calculated for the boreholes and their 

neighbouring CPTs (Figure 2, right). 

 
Figure 2: CPT point resistance and logarithm of the hydraulic conductivity. Left: Scatter plot 

and fit. Right: Pseudo cross semivariogram. 
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Currently, only vertical information is gathered based on the vertical data profiles. Additional 

sampling and measurements will be performed in the future to provide information of the 

horizontal spatial variance and to optimize the use of secondary data. Together with the current 

results, these will serve as the basis for conditional stochastic simulation of groundwater flow 

and contaminant transport. 
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Abstract 

Daily precipitation is a key parameter for predicting hydropower generation in Canada. Several 

issues commonly make difficult the estimation of precipitation: scarce moniroting networks 

associated with high spatial variability. Though external factors such as a Digital Terrain Model 

may be useful when predicting average precipitation over a greater period of time (month, year), 

these factors become useless in the case of daily precipitation (Goovaerts, 2000). In the Quebec 

case, the presence of local anisotropies and clear large scale non stationarities are key issues 

when dealing with daily precipitation datasets. Applying classical geostatistical methods results 

in difficulties to capture the precipitation spatial continuity and its actual variability over the 

region. To overcome these issues, an attempt has been made to apply the Moving-GeoStatistics 

(M-GS) framework, which is dedicated to the local optimization of parameters involved in 

variogram-based models (Magneron et al., 2008). M-GS considers the structural and 

computational parameters as a set of parameters to be spatially optimized. Obtained structural 

parameters are then taken into account during kriging and stochastic simulations, the latter being 

required to obtain global precipitation distributions over watersheds. The results are compared 

with the ones obtained using a classical universal kriging approach. 

 

Material & Methods 

The daily precipitation dataset comes from the Réseau météorologique coopératif du Québec 

(RMCQ). The RMCQ is a partnership initiative from the managers of Quebec meteorological 

networks: Rio Tinto Alcan, Environment Canada, Hydro-Québec, the Quebec Department of 

Sustainable Development, Environment and Parks (MDDEP), the Quebec Department of Natural 

Resources (MRN) and the Society of Protection of Forests against Fire (SOPFEU).This paper is 

focused on a specific day, the 18th of January 2009 and on two watersheds  (see Fig. 1): “Rivière 

Mouchalagane” (North) and “Rivière Rouge” (South).  

The Moving-GeoStatistics (M-GS) framework offers several ways to determine local structural 

parameters to be used during kriging or simulations. Among them, a local cross-validation 

approach has been applied in the present case, aiming at determining the optimal structural 

parameters within adjacent windows. An overlapping of the windows is usually recommended to 
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ensure continuity in the variation of the structural parameters. Once determined, the parameters 

can be re-interpolated on the final grid and directly used in subsequent estimation / simulation 

procedures. The efficiency of M-GS is tested by comparison with a classical universal Kriging 

(UK) (Chilès and Delfiner, 1999). The comparison is based on: visual comparison of results, 

local ability to predict precipitation values on a distinct validation subset, global estimates of 

precipitation and related confidence interval over two watersheds. 

 

Results 

142 precipitation values are available for the 18th of January 2009. As illustrated by Fig. 1, the 

spatial distribution of precipitation values is highly non stationary with a global decrease of 

values towards the North. 

 

Figure 1: Location and daily precipitation values for day 18/01/09. Crosses without values 

correspond to an absence of rain. Location of two watersheds of interest, display of Digital 

Terrain Model in background. 

 
A local determination of several parameters (M-parameters) has been performed (see Figure. 2): 

direction of anisotropy and ranges using the local cross-validation approach, sill through the 

computation of local variances within consistent windows. Kriging using these M-parameters is 

illustrated on Figure. 3 together with its associated standard deviation map; both maps provide 

more realistic estimates of the precipitation field compared to a classical UK approach, which is 

confirmed by statistical results obtained on a validation subset.  

Average global estimates of precipitation over two watersheds are then estimated using 
stochastic simulations. Results derived from classical simulations provide unrealistic global 
precipitation estimates, particularly for the “Rivière Mouchalagane” watershed; this is much 
improved using M-parameters (see Table 2). 
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Perspectives 
Applying Moving-Geostatistics leads to promising perspectives for mapping variables which 

present varying local anistropies and/or non stationarities. However, several theoretical aspects 

still need to be improved, including for instance the authorization conditions for making vary 

underlying M-parameters and the gaussian assumption underlying the application of stochastic 

simulations (word performed on raw values in the present cas). 

 

  
Figure 2: Local determination of the direction of anisotropy (left) and the sill (right). 

 

  
Figure 3: Precipitation M-kriging (left) and standard deviation map (right) using M-

parameters. 

 

Table 2: Global precipitation estimates over two watersheds obtained using Turning Bands 

(with local trends) and SGS with M-parameters: bassin name, surface, accumulated 

precipitation estimates (Q5, average, Q95), standard deviation and coefficient of variation (CV). 

 
Accumulated precipitation (hm

3
) River bassin Surface 

(km
2
) 

Simulation 

Approach Q5 Average Q95 Std Dev. CV 

TB 19 3 141 9 660 3 185 1.01 Rivière 

Mouchalagane 
5 945 

M-GS 375 30 040 99 663 29 957 1.00 

TB 87 740 112 748 143 340 16 114 0.14 
Rivière Rouge 5 619 

M-GS 66 005 101 605 144 753 22 365 0.22 
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In many works on Bayesian spatial analysis the prior for the correlation parameters is chosen
to be vague (e.g. Banerjee et al. [1]), which does not reflec the absence of prior knowledge
and may even be highly informative. Therefore, Berger et al. [2] developed default priors
for unknown regression parameters, variance parameter and range parameter of the Gaussian
random fiel model with isotropic covariance function. However, they did not take account of
a possible nugget effect. De Oliveira [4] was the firs to calculate non-informative priors for
the nugget effect but treated the range parameter as being known. In this paper we show that
for the Bayesian spatial copula model (Kazianka and Pilz [5], Kazianka and Pilz [6]), the joint
Jeffreys’ prior for nugget and range given the marginal parameters η takes a simple form and
serves as a default choice.

The correlation matrix Σθ of the Gaussian copula is parameterized by an isotropic correlation
function model including a range parameter, here denoted by ϑ1, and a nugget parameter, 1-ϑ2.
The following theorems state how Jeffreys’ prior for θ = (ϑ1, ϑ2) given the parameters of the
marginal distribution, η, can be calculated and that it leads to a proper posterior distribution
even though the propriety of the prior itself is not guaranteed. It turns out that the prior does
not depend on η which supports the "approximate correlation invariance"-theory by De Oliveira
[4]. Since the Gaussian spatial copula model includes the Gaussian random field the results
are also valid in this case.

Theorem 1. DenotingW i = ∂Σθ

∂ϑi

Σ
−1

θ
, i=1,2, Jeffreys’ prior density forθ = (ϑ1, ϑ2) givenη

in the Gaussian spatial copula model can be written as

pJ (ϑ1, ϑ2 | η) ∝
{

tr
[

W 2

1

]

tr
[

W 2

2

]

− (tr [W 1W 2])
2
}

1

2 . (1)

Theorem 2. If Σθ = (1 − ϑ2) I +ϑ2

(

11
T + ν (ϑ1) (D + o (1))

)

asϑ1 → ∞, whereν (ϑ1) >

0 is differentiable and monotonically decreasing,D is a fixed nonsingular matrix and1T =

(1, . . . , 1), then the posterior distribution ofθ | η using Jeffreys’ prior in the Gaussian spatial

copula model is proper.

A joint prior for all the parameters can be determined by p (Θ) = pJ (θ | η) p (η). If p (η) is
proper and Z denotes the data vector, the posterior p (Θ | Z) is also proper.

Corollary 1. Under the assumptions of Theorem 2pJ (ϑ1, ϑ2 = 1 | η) is not integrable.

Corollary 2. For the correlation function models discussed in Berger et al. [2] the behavior of

pJ (ϑ1, ϑ2 = 1 | η) asϑ1 → ∞ is given by
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Model pJ (ϑ1, ϑ2 = 1 | η) Model pJ (ϑ1, ϑ2 = 1 | η)

Matern: Rational quadratic O (ϑ1)

κ < 1 O
(

ϑ2κ−1

1

)

Power exponential O
(

ϑν−1

1

)

κ ≥ 1 O (ϑ1) Spherical O (1)

Generally, ifΣθ (h) = (1 − ϑ2) I (h = 0) + ϑ2 + c1

(

h

ϑ1

)

2

+ o (h2) ash → 0, thenΣθ is at

least two-times differentiable forϑ2 = 1 and it holds thatpJ (ϑ1, ϑ2 = 1 | η) ∈ O (ϑ1).
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Figure 1: Jeffreys’ prior pJ (θ | η) for a Matern model with (a) κ = 0.25 and (b) κ = 1. The
121 observation locations are placed on a regular grid inside the unit square.

Corollary 2 and Figure 1 clarify that the behavior of pJ (ϑ1, ϑ2 = 1 | η) as ϑ1 → ∞ strongly de-
pends on the smoothness of the correlation function model. For differentiable random processes
perfect correlation is a-priori most likely. For non-differentiable random processes, however,
high values of ϑ1 are equally likely a-priori (e.g. spherical or exponential model) or are even
less likely than smaller values (e.g. Matern model with smoothness parameter κ < 0.5).
The Jeffreys’ prior depends also on the sampling design. Priors for a regular, a random and
a clustered sampling design with the same number of observations differ in their behavior to-
wards ϑ2 = 1 and ϑ1 = 0. Therefore, care must be taken when pJ (ϑ1, ϑ2 | η) is used for
models that include geometric anisotropy. In this case the prior is conditional on the actual
values of the anisotropy ratio a and the anisotropy angle ϕ that change the sampling design,
pJ (ϑ1, ϑ2 | η, a, ϕ). This has to be considered at every step of the Metropolis-Hastings algo-
rithm presented in Kazianka and Pilz [5].

To illustrate our methodology we analyze a data set which contains Cs137 values at 148 lo-
cations in the region of Gomel, Belarus. The data were observed in 1996, ten years after the
Chernobyl accident. The observations are right-skewed which motivates us to use the log-
normal distribution with parameters η = (µ, σ2) as a marginal distribution in the Gaussian
copula-based spatial model. We treat µ and σ2 as being independent a-priori and use a normal-
inverse-gamma prior, µ ∼ N (0.8, 1) and σ2 ∼ IG (11, 30). Hyperparameters are chosen to
provide conservative bounds for µ and σ2. The prior for the exponential correlation function
model is the Jeffreys’ prior from Eq. (1). A uniform prior on [1, 10] × [0, π] is chosen for the
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Figure 2: Histograms of 50000 posterior samples for the model parameters. Red bars: Uniform
prior for θ. Blue bars: Jeffreys’ prior for θ.

anisotropy parameters a and ϕ. Histograms of 50000 posterior samples are visualized in Fig-
ure 2. Compared with the uniform prior for θ, the Jeffreys’ prior favors a smaller nugget and a
larger range. To compare the two models we perform cross-validation using the means of the
posterior predictive distributions as the estimators. We fin that the use of the Jeffreys’ prior
reduces the RMSE (19.12 vs. 19.38) the MAE (2.19 vs. 2.23) and the bias (0.17 vs. 0.26).
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Abstract 

The Multinomial Categorical Simulation (MCS) algorithm (D'Or et al., 2008) uses a maximum 

entropy approach to compute the local conditional distribution of a multinomial vector of 

variables conditionally to the categories observed in the neighbourhood. It has been shown in 

Allard et al. (accepted for publication) to be an efficient approximation of the BME approach for 

categorical variables proposed by Bogaert (2002). 

The probability of occurrence of category i at location x0 given the categories observed in the 

neighbourhood can be computed using the equation 

 

where 
0i
p is the univariate probability (frequency) of category i at location x0, ( )kiik

p 0
0
h  is the 

probability of occurrence of category i at location xk conditionally to the occurrence of category i 

at location x0, and ( )kii k
p 0,0

h  is the joint probability of occurrence of category i at location xk and 

i at location x0. This equation is very simple and fast to compute since it only includes products 

and sums of first and second order probabilities. 

Up till now, only stationary situations were considered. However, proportion trends are 

frequently observed in natural processes. For example, there can be a trend in proportion of 

geological facies, with some facies occurring more frequently in some part of the domain than in 

others. 

In this paper, we extend the approach to the non-stationary cases. We discuss the various types of 

non-sationarity and we focus further developments on the most relevant one, i.e. when the 

univariate probabilities are non-stationary (First order non stationarity). 

We show that the equation presented above can be computed using stationary transiograms 

( )kiik
p 0

0
h  (Carle and Fogg, 1996) reflecting the spatial correlation and non stationary univariate 

probabilities 
0i
p as trend information.  
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Synthetic non conditional simulations using 3 categories are presented to illustrate the method. A 

first example considers the case of a North-South trend for the two first categories (Figure 1). 

Resulting maps (Figure 2) reflect the decreasing proportion of category 1 from South to North 

and the corresponding increasing of proportion for category 2. 

In a second example, a more complex type of trend is considered (Figure 3), inducing a 

probability of occurrence near to zero for category 1 in the central South area and for category 2 

in the central North area. Simulated maps (Figure 4) show that the desired features are 

reproduced, including the ordered sequences of categories into the North-East direction imposed 

by the model of transiograms. 

 

 

Figure 1: Proportion trend maps for Example 1 : North-South trend in probabilities of 

occurrences for the 3 categories. 

 

 

Figure 2: Simulations using MCS (a) without incorporating the trend information, and (b) with 

the trend information. 
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Figure 3: Proportion trend maps for Example 2: Complex trend in probabilities of occurrences 

for the 3 categories. 

 

 
Figure 4: Simulations using MCS (a) without incorporating the trend information, and (b) with 

the trend information. 
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A technique that has often proved worthy when modelling some heterogenic (or nonstationary) 

spatial process, is moving window kriging (MWK) (Haas 1990).  Here, unlike most standard 

techniques, the variogram is allowed to vary across space.  This interesting adaptation provides a 

MWK model with the potential to not only improve prediction accuracy over a standard kriging 

counterpart, but also improve estimates of prediction uncertainty.  In this study, we investigate 

the MWK model in some detail, where we demonstrate ways to explore and visualise this model, 

both to help in its calibration and to help in the interpretation of its output. 

For MWK, a local variogram is determined at every target location in this fully-automatic, 

continuous and locally-adaptive technique.  At each location, the variogram parameters are used 

to calibrate a kriging algorithm to provide a prediction and its variance.  Crucial to MWK is the 

spatial scale at which the local variography takes place.  If the window is too small, then the 

variography tends to be unreliable as information is limited.  If the window is too large, the 

output of MWK will tend to that of its standard kriging counterpart, and thus offer no benefit.  

The decision of whether or not to apply MWK over a stationary counterpart often depends on a 

trade-off between: (a) many ill-fitted local variograms, but with potentially more accurate model 

outputs and (b) a well-fitted (and understood) global variogram with possibly less accurate 

model outputs.  As MWK is inherently more complex and approximate, there must be good 

reason to favour it.  MWK will be of little worth if local variograms are only marginally different 

from each other and from the global one. 

MWK models can extend most standard (stationary variogram) kriging algorithms.  For 

example: Haas (1990; 1996) constructs lognormal, regression and co- kriging versions; Lloyd 

and Atkinson (2002) and Pardo-Igùzquiza et al. (2005) present universal kriging versions; and 

Cattle et al. (2002), an indicator kriging version.  There are also MWK-nonparametric hybrids, 

where the local variogram parameters found from MWK are kernel smoothed (i.e. KS-MWK) 

(Haas 2002; Pardo-Igùzquiza et al. 2005).  This use of a kernel function allows a global model of 

spatial dependence to be defined that represents the spatial process as a whole (Sampson et al. 

2001).  Smoothed parameters can also be robust to outlying data that can affect the local 

variography.  A different hybrid is possible when a kernel function is not used to smooth local 

variogram parameters (as in KS-MWK), but is used instead to smooth the individual (estimated) 

semivariances of each lag interval according to the distance of these paired values from a target 
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location.  Here a geographically weighted variogram (GWV) is found at any location, creating an 

alternative MWK hybrid (Harris et al. 2010).  The expected benefit of a GWV is that it does not 

rely on limited local information to be local and reliable, as that does a local classic variogram 

estimator of a standard MWK model. 

Rudimentary MWK models globally-specify (i.e. the specification is fixed): a classic variogram 

estimator, a weighted least squares (LS) variogram model fit and one variogram model-type (e.g. 

Matérn) using the raw sample data.  Local and global issues of trend, nonlinearity and data 

clustering are commonly ignored.  However, supplementing the extensions and hybrids above, 

more elaborate MWK models are possible.  For example, models can be globally-specified with: 

a different variogram estimator (e.g. a weighted variogram for clustered data); an alternative LS 

variogram fitting technique; WSS or AIC to choose the best LS variogram model fit; etc.  

Models can also be globally-specified with: maximum likelihood parameter estimation (Pardo-

Igùzquiza et al. 2005); nonparametric variography; techniques to incorporate any anisotropic 

effects; etc.  Furthermore, models can locally-specify (i.e. the specification varies across space): 

the variogram estimator (e.g. use a robust variogram in areas of outliers); the variogram model-

type; the data detrending (Haas 1990; 1996; Pardo-Igùzquiza et al. 2005); and the data transform 

(Haas 2002). 

 

 
Figure 1: Comap (specified using kernel density estimation) for the local nugget effect versus the 

local correlation range (in logs) found using a basic MWK model of the critical load data. 
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Therefore MWK models in basic, elaborate and hybrid form are all possible; most of which are 

constructed and visually explored in this study.  We apply MWK models to a freshwater 

acidification critical load dataset covering Great Britain (CLAG Freshwaters 1995).  The size 

and scale of this dataset suits a nonstationary approach where EDA provided strong evidence of 

variogram nonstationarity.  This EDA included a visual deconstruction of the global variogram 

using h -scatterplots, the variogram cloud and the interactive methods of Glatzer and Müller 

(2004).  It also included an assessment of the proportional effect and the construction of local 

variograms within eight (geographical) partitions.  This study’s graphical outputs from any 

MWK calibration should confirm these exploratory findings. 

Thus at every target location of a MWK model, a wealth of information (or model parameter 

data) is possible depending on the complexity of the MWK model adopted.  For example, not 

only can the local variogram parameters be mapped, but also: the local window size; the number 

of pairs at the first lag; the local trend parameters; the local transform parameter; local model fit 

statistics; etc.  Furthermore, indicator data can be used to map the types of: transform; 

detrending; variogram model; and variogram estimator used.  It is also possible to compare the 

lag-specific semivariances of each local variogram estimator to those of the global estimator. 

To move on from a simple mapping of these rich MWK spatial datasets, we instead calculate 

geographically weighted (GW) summary statistics (Brunsdon et al. 2002) to visualise this data.  

For example, GW correlations can be found that spatially relate the local nugget effect (the ratio 

of nugget variance to total variance) to the local range.  This not only provides an assessment of 

variogram nonstationarity but also identifies regions most suited to kriging (kriging performs 

well in a relative sense when the nugget effect is small and the range is large).  Alternatively, a 

spatial variant of the co-plot, the comap (Brunsdon 2001), can be constructed to assess the same 

relationship.  Such a comap is given in Fig. 1, where there is clear evidence of variogram 

nonstationarity, as both the nugget effect and the range vary across space.  Furthermore, critical 

load prediction accuracy should be relatively strong in areas that traverse the borders of Wales 

and England (bottom-right map), but relatively weak in areas of W Scotland and NW England 

(top-left map).  In this study, other MWK relationships are similarly visualised with the comap 

and for relationships in higher dimensions, a spatial visualisation is not so easy, so here we 

present parallel coordinate plots.  Other visualisation techniques are currently under 

consideration. 
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Summary 

In this paper, we discuss features of local polynomial interpolation (LPI), focusing on the 

problem of unstable solution of the LPI system of linear equations. First, a diagnostic based on 

condition numbers is discussed. Then, a variant of Tikhonov regularization is proposed, which 

allows producing continuous predictions and prediction standard errors nearly everywhere in the 

data domain. This variant of interpolation can be applied in the presence of barriers defined by 

polylines. We illustrate the use of LPI with both simulated data and with the water nutrient data 

collected in the Chesapeake Bay.  

 

Local polynomial interpolation and kriging 

LPI is used in meteorology since 1949. An excellent review of this model’s features can be 

found in the beginning of the first book on objective spatial interpolation written in 1963 by Lev 

Gandin [1]. Several disadvantages of LPI motivated Gandin to develop the optimal interpolation 

model now known as kriging [2, 1]. Recent investigations of LPI’s features can be found in the 

statistical literature on Geographically Weighted Regression, a generalization of LPI, see for 

example [3].  

We discuss disadvantages of LPI in detail. However, LPI has several useful features: 

It is fast: the computational time is proportional to the number of the data in the searching 

neighborhood. By comparison, kriging’s computational time is proportional to the number of 

data raised to the third power.  

It is successfully used for data detrending in various geostatistical models.  

It is equivalent to the universal kriging model when all spatial variation is described by the trend 

and the semivariogram model is a nugget effect, which consists of the measurement error only 

(i.e. there is no microstructure component of the nugget, see also [4]). In this case, LPI can be 

used as an optimal interpolator. 

When LPI is used to describe large-scale variation in conventional kriging models, its prediction 

uncertainty can be ignored because it is small when the moving window kernel is large and, 

therefore a sufficient number of observations is used for smooth surface creation. This is not the 

case, however, when the model attempts to completely describe the spatial data variation, 

because in this case, optimal kernel size is usually small and the solution of the LPI system 

becomes unstable. We show how this instability can be described by a variant of condition 
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number diagnostic, which we call spatial condition number. Prediction and prediction standard 

error should not be used in the areas with large spatial condition numbers. This requirement leads 

to a problem with finding optimal parameters of the model using cross-validation diagnostic. We 

show how cross-validation can be used when predictions cannot be made at some data locations. 

 

Tikhonov regularization and interpolation in the presence of barriers 

Inability to make predictions in all locations in the data extent makes LPI model less attractive 

for GIS applications. This problem can be solved using Tikhonov regularization, also known as 

ridge regression [5].  

We discuss a variant of Tikhonov regularization for spatial interpolation with first order local 

polynomials. The resulting model has a Bayesian interpretation: the more unstable the linear 

system, the larger the correction required. This correction is varying spatially and it can be 

displayed as a map. The prediction standard error cannot be calculated exactly because it 

requires knowledge on the true regression coefficients, which are unknown. We show how a 

pessimistic estimate of the prediction standard error can be made.  

Since LPI with Tikhonov regularization model makes continuous predictions in the data extent, it 

can be used for interpolation in the presence of barriers defined by a series of polylines 

(instability of standard LPI can be very large in this situation). In the case of non-transparent 

barriers, the distance between points is calculated as the shortest sum of the series of lines which 

do not intersect the polylines.  

Figure 1 shows an example of local polynomial interpolation using the water nutrient data 

collected in the Chesapeake Bay (symbols ♦ show the locations of the observations.) The map 
on the left shows predictions calculated based on Euclidean distance metric, ignoring the border 

of the water bed. The map in the center show predictions in the presence of barriers and a map at 

right show the prediction standard errors in the presence of barriers.  

As expected, the predictions and the prediction standard errors (not shown for standard LPI in 

this abstract) are clearly different for Euclidean and non-Euclidean distance metrics. It can be 

shown that the predictions are more accurate when the barriers for water flow are used. 
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a)    b)     c) 

Figure 1: a) Predictions made using Euclidean distance metric; b) Predictions in the presence of 

barriers; c) Prediction standard errors in the presence of barriers. 
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When applying geostatistical algorithms to build geological models, one has to define parameters 

describing geological continuity, such as the choice of a training image, the variogram model or 

the Boolean model parameters and rules. In most cases, spatial variation is represented by a 

combination of parameters (for example mean, variance, variogram type and range) in the 

presence of constraining data (hard, soft, dynamic data). We use sensitivity analysis to determine 

the influence of such combinations of parameters on a given target. By figuring out what matters 

and what doesn’t, such analyses can lead to a more focused modeling of the subsurface 

uncertainty. 

Experimental designs are well suited for assessing the sensitivity of parameters which have a 

smooth relationship with the response of interest such as the mean or the variogram range. 

However, traditional methods for sensitivity analysis can be challenged when the relationship 

between parameters and models response cannot be defined analytically, and when different 

parameters are related to each other in a non-linear manner. Nor do experimental designs easily 

allow for inclusion of data, such as obtained from wells, geophysics or dynamic responses that 

may constrain these parameters. 

This is illustrated in figure 1, where we show the one-way correlation between a given decision 

variable (the target) and the parameters used to generate 1000 realizations with an object-based 

method that has 5 parameters. The first parameter determines the type of objects, and the 

remaining parameters define various objects attributes (objects anisotropy, size, number). If it 

exists, any relation to the target is not visible when considering parameters individually. Indeed, 

no correlation can be deduced from figure 1. 

 

 
Figure 1: One-way sensitivity analysis 

 

To tackle this problem, we propose to use distance-based techniques (Suzuki and Caers, 2008; 

Scheidt and Caers, 2009; , 2010). The approach is based on the notion of a distance (a single 
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scalar value) that is defined with respect to a specific goal. The purpose of this distance is to 

bring structure to the large variability of geological models. 

Using a distance, one can create a map of a set of complex models. This tool is known in 

statistics as Multi-Dimensional Scaling (Borg and Groenen, 1997). Given a distance matrix D, 

such a representation displays an ensemble of models mi as a set of points in a possibly high-

dimensional space, each point corresponding to a model. Points are arranged in such a way that 

their respective distances are preserved as much as possible, in a least-squares sense. D can be 

computed using any appropriate measure of distance. 

Once the models are represented as a set of points, clustering techniques can be used to define 

groups of models that share similar characteristics. Interestingly, different distances will produce 

different groupings. 

In the framework of sensitivity analysis, we propose to use distances and clustering techniques to 

1) identify the combinations of parameters that influence a given target and 2) to assess the 

information contained in the data with respect to this target. To this end, we distinguish three 

possible distances between models: 

• The target distance, defined by the difference in the prediction given by two models. 

• The parameters distance that defines the similarity between the sets of parameters used to 
generate models. 

• If data are present the data distance is considered. It is the difference in the reproduction 
of data by any two geological models. 

The data distance can be used to assess the worth of matching the data. Perfectly informative 

data would mean maximum correlation between data and target distances. In a realistic setting, 

these two distances may be poorly correlated, indicating that the exercise of matching the data 

through an inverse problem is irrelevant. Figure 2 displays the correlation between data distance 

and target distance for the same 1000 object-based models as before. It shows that in this case, 

the data are informative on the target. 

 

Figure 2: Correlation between data distance and target distance 

 

The parameters distance is best suited when one-way sensitivity analysis is not able to identify 

the influence of individual parameters, such as in figure 1. It consists in the distance between two 
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vectors of parameters. We use the weighted linear combination of the distances between each 

individual parameter in the parameters vectors. The weights for the linear combination are 

chosen such that the parameters distance is as much as possible correlated to the data distance. In 

other words, models that have similar parameters will yield similar predictions. 

Then, we perform clustering using the parameters distance. Each resulting cluster is made of 

models that have been produced with similar parameters sets. Finding sensitive combinations of 

parameters (or sensitivity envelopes) is then a matter of identifying those clusters that are in 

accordance with the data and that are influential on the target. Figure 3 displays the combinations 

of parameters related to two such clusters. One can see that specific relations between parameters 

should be considered. For example, it seems that one should use either numerous small objects of 

type 3, or many large anisotropic objects of type 2. 

 

 

Figure 3: Clusters of parameters that are in accordance with the data and influential on the 

target. 

 

Once favorable combinations of parameters have been identified, one has basically updated the 

prior or initial conceptual uncertainty into a new (posterior) uncertainty that is constrained by the 

data. Note that geological models are not matched to data. Instead, the distance methodology is 

used to identify the combinations of parameters that are consistent with the data and relevant for 

the target. 
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Introduction 

Traditionally environmental data are considered in low dimensional geographical spaces (2 or 3) 

using geostatistical models (interpolations or simulations) and variography is used to 

characterize spatial (correlation) anisotropic structures (patterns). In reality, many real 

environmental problems are described in high dimensional input spaces, which consist of 

geographical coordinates and geo-features, such as satellite images, physical models, or 

generated, for example, from digital elevation models (slope, curvature, etc). For example, the 

nonlinear problems of topo-climatic modelling in mountainous regions, assessment of natural 

hazards (landslides, avalanches) are considered in spaces of dimension more than 10 (typically 

30-50). The number and combination of active features contributing to the solution can vary 

depending, for example, on season or phenomena under study. This is a typical problem of 

feature selection/extraction. Therefore, development and adaptation of efficient tools recognizing 

and modelling patterns in high dimensional spaces and capable to automatically select relevant 

geo-features is an important issue.  

The present methodological research studies the application of adaptive General 

Regression Neural Networks (GRNN) to solve the following tasks: 1) pattern detection, or 

discrimination between structured data and random noise; 2) automatic selection of relevant 

features; 3) modelling of patterns (spatial predictions); 4) analysis of the residuals. The study is 

carried out using real data sets of monthly wind measurements in Switzerland.  

Analysis of Patterns Using General Regression Neural Networks  

GRNN is a development of classical Nadaraya-Watson regression estimator (Specht 1991; 

Kanevski et al 2009). In the general case of advanced adaptive (anisotropic) GRNN model, when 

kernel bandwidths depend on the geo-features, the GRNN prediction (conditional mean value) is 

defined by the following formula Specht (1991): 
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bandwidth corresponding to the k
th
 geo-feature. Usually Euclidean measure is used to compute 

the distances. In a more general setting Mahalanobis distance can be applied. The model can also 

be generalized to the case when bandwidth is variable in space.  

The only unknown parameters are kernel bandwidths and it is a task of GRNN training. There 

are several possibilities to tune bandwidths. The most frequently used are based on cross-

validation error and its variants (leave-one-out; k-Fold) or splitting of data into training and 

testing subsets. Optimal bandwidths have minimum testing/cross-validation errors.  

GRNN has important properties: when bandwidths are very small GRNN is equivalent to nearest 

neighbour estimator (Voronoï polygons); when bandwidths are very large – larger than the 

region of the study, the solution is a mean value which corresponds to unstructured data (no 

patterns). Such situation is encountered when error curves (surfaces) do not show a clear 

minimum. This can be used as an important diagnostic tool for the analysis of the residuals. 

When bandwidths are larger than maximal distances between points in some directions, than 

these features are automatically ignored. Therefore anisotropic GRNN automatically performs 

feature selection by scaling input features differently. Another possibility to select the most 

appropriate features using GRNN is to consider all possible combinations of features (2
m
-1) and 

to select models with the minimum cross-validation or testing errors. When number of features is 

less than 20 this approach is quite feasible but for more features other optimization techniques 

can be used to find approximate good solutions.  

Real case studies of wind speed mapping support the ideas and hypotheses considered above. 

The seven dimensional input space is composed of geographical coordinates, elevation and four 

geo-features generated from digital elevation model (terrain slope, directional derivative and 

convexity at different scales). Output is monthly wind speed. Number of measurements is 132. In 

order to avoid problems with scaling, all inputs and outputs were normalized (Z-score 

transformed). Therefore we can perform both the analysis with isotropic model (all bandwidths 

are the same in the Z-score space) as well as complete anisotropic analysis (bandwidths are 

feature dependent).  

Figure 1 presents an analysis of patterns in a geographical space. Cross-validation error curve 

shows no minimum, depicting the absence of spatial structure, which is confirmed by 

exploratory variography (pure nugget effect at the measurement scale). 

 
Figure 1: GRNN training in a geographical space. Left – kernel bandwidth (X-axis) vs. cross-

validation error (Y-axis); right – lag step (X-axis) vs. directional variograms (Y-axis) 
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Exploratory analysis in the geo-feature space is shown in Figure 2. In this space cross-validation 

error curve has a clear minimum, i.e. there is a structure. In Figure 2 (right) a cross-validation 

curve for shuffled data (spatial structure destroyed) is presented, which extends the hypotheses 

about absence of structure to a high dimensional space.  

 
Figure 2: GRNN training in a geo-feature (7D) space. Left – raw data wind measurements; right 

– shuffled data (destroyed spatial structure) 

 

Now, let us consider the application of GRNN as a feature selection tool. In this case (7D) all 

possible models (all possible combinations of inputs) were evaluated using cross-validation and 

then they were ordered according to the cross-validation error (Figure 3). Most relevant inputs of 

best models (red rectangle in Figure 3) are the ones derived from topography and not the original 

XY coordinates. 

 

Figure 3: Wind data. “Feature” selection map (left) and ordered cross-validation errors of the 

first 50 models (right). X-axes correspond to the ordered solution (best at the origin) and Y axes 

correspond to feature’s order (left figure, from bottom: X,Y,Z,terrain convexity1+2,directional 

derivative, slope) and cross-validation error (right figure) 

 

Conclusions  

In the present study an efficient application of General Regression Neural Networks for the 

detection, analysis and modelling of high dimensional geo-spatial data is proposed. It was 

demonstrated that adaptive GRNN can be used as an efficient feature selection algorithm. These 

properties can be important in developing automatic mapping systems and as exploratory 
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modelling tools. Future research will consider other real case studies and extension of GRNN in 

order to estimate the variances and uncertainties of the predictions.  
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In a property modeling context, the variables of interest to be modeled often display complex 

non-linear features.  Techniques to incorporate these nonlinear features, such as multiple point 

statistics or cummulants, are often complex with input parameters that are difficult to infer.  The 

methodology proposed in this paper uses a classical vector based definition of locally varying 

anisotropy to characterize non-linear features and incorporate locally varying anisotropy into 

numerical property models.  The required input is an exhaustive field of anisotropy orientation 

and magnitude.  The methodology consists of (1) using the shortest path distance between 

locations to define the covariance between points in space (2) multidimensional scaling of the 

domain to ensure positive definite kriging equations and (3) estimation or simulation with 

kriging or sequential Gaussian simulation respectively.  The methodology is demonstrated on a 

CO2 emissions data set for the United States in 2002. 

 

Introduction 

Incorporating anisotropy into numerical models enhances the predictive power of the resulting 

models.  Consider a simple example of air pollution, adding a slight northerly wind (Figure 1 

left), the pollution is more continuous in a single direction (constant anisotropy).  If we are given 

the knowledge that the pollution source is located in a mountainous valley (Figure 1 right), the 

wind is now more erratic and the pollution spread is complex, thus, the direction of anisotropy 

varies and the pollution is said to be continuous in locally varying directions (locally varying 

anisotropy).  Knowing the anisotropy of the variable of interest increases predictive power.  At 

the unsampled location A, if there is a constant northerly anisotropy in the form of wind we 

would predict no pollution.  Adding non-stationary anisotropy in the form of erratic winds alters 

our estimate of the pollution level (Figure 1).  Knowing the direction and magnitude of 

anisotropy helps in making better predictions at unsampled locations.  This can be applied to 

modeling any variable of interest that displays locally varying anisotropy (LVA) in the domain 

of interest. 

 

Past Work 

Some methodologies exist for incorporating LVA because variables such as pollution spread, 

rain fall patterns and animal migration can be extremely non-linear.  Sampson and Guttorp’s 

(1992) early work in this area has since been expanded upon.  Typically, applications using 
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stream distances involve pollution or fish migration studies; small 1D grids are sufficient.  

Generating 3D models containing millions of cells with these methods would be infeasible.   

 
Figure 1: Cloud indicates increased concentration. Left: North wind, constant anisotropy.  

Right:  Erratic wind, LVA. 

 

A similar approach is considered here with the water distance analogous to the shortest path 

distance (SPD).  The current work with stream distances attempts to incorporate physical 

boundaries and barriers (i.e. rivers) rather than locally varying anisotropies as presented in this 

paper. 

 

Methodology 

At the heart of geostatistics is the spatial prediction of variables from sparse sample data.  From 

these spatial predications of concentrations, grades or porosities, volumetric calculations can be 

made and site classifications determined.  LVA is incorporated into the spatial predictions of 

variables by using the optimized SPD between locations.  Kriging and sequential Gaussian 

simulation (SGS) are geostatistical tools often applied in geostatistical studies as an alternative to 

IDW and are modified to incorporate LVA.  Multidimensional scaling (MDS) techniques are 

implemented to guarantee the positive definiteness of this system of equations. 

Step 1: Generate the LVA field:  The LVA field is parameterized by local directions and 

magnitudes of anisotropy which can be specified differently for each cell of the model.  In 2D 

two parameters are required (1) a strike and (2) an anisotropy ratio (magnitude in strike 

direction/magnitude in orthogonal direction).  In 3D,  three angles are required to fully define the 

orientation of the anisotropy and two ratios are used to define the magnitude (as per GSLIB 

convention).  The LVA field is an integral portion of this methodology.  A number of data 

sources could be used to infer the LVA field, including hard/soft data, seismic, knowledge of the 

underling physical laws acting on the variable of interest, direct measurement of the anisotropy 

parameters at discreet locations or expert interpretation.  In the proposed methodology it is 

assumed that an exhaustive LVA field exists for the variable of interest.  We are currently 

working on a manuscript that addresses LVA generation. 

Step 2: Calculate the SPD:  With the definition of the LVA field the distance between any two 

locations in space can be determined by formulating the problem as a graph (Boisvert and 
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Deutsch, 2010).  The distance between points is determined by the path that results in the 

shortest anisotropic distance between locations.  In the case of second order stationarity, this 

shortest path is the straightline path; however, when LVA is introduced, nonlinear paths that 

follow the major directions of anisotropy can return shorter distances. 

Step 3: Incorporating LVA into modeling:  The SPD metric can be used with an inverse 

distance estimator by changing the distance metric in the traditional inverse distance equation to 

the SPD.  Incorporation of the SPD into kriging and SGS is more difficult as the SPD metric 

does not ensure positive definite kriging equations (Curriero 2005).   ISOMAP-L (Tenenbaum et 

al. 2000), a multidimensional scaling technique, is used to guarantee positive definiteness 

(Boisvert and Deutsch, 2010).  Kriging and SGS are applied as per a typical implementation but 

with the distance between locations obtained from the coordinates of the grid cells in the q-

dimensional Euclidian space after ISOMAP-L.   

 

Case Study 

The methodology summarized above and given in detail in Boisvert and Deutsch (2010) is 

applied to the 2002 total CO2 output of the United States ( 

Figure 2).  Much of the LVA in this data set is due to high population centers and major traffic 

ways.  The data is available on a 10km square grid.  The LVA field is shown in  

Figure 2 and was generated with the moment of inertia method (Mohammadhassanpour and 

Deutsch, 2008).  In general the LVA field follows the major traffic ways.  In areas where there is 

no anisotropy (all high values or all low values) the orientation of the LVA field is erratic, but 

the anisotropy ratio is ~1.0 (isotropic), thus has little effect in these areas.  The exhaustive grid is 

resampled to 100km resolution and kriging with LVA is compared to traditional kriging (Figure 

3).  Local prediction is improved, measured by an increase of 9% in the covariance between the 

truth and estimates.  Moreover, local features due to the traffic (highlights on Figure 3) are seen 

in the map using LVA (Figure 3).  For convenience, comparisons are made in normal score units; 

gains in covariance and local features are similar in original units. 

 
Figure 2: Tonnes of CO2 emissions in the United States, 2002 (source: Vulcan Project, Gurney 

2010, data available online).  Right: Grayscale image with LVA field overlain, plot dimensions 

are identical. 
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Figure 3: Left: Traditional kriging modeled variogram, estimate mean map (showing locations 

of the 834 samples used)  and cross-validation with the truth (scatterplot).  Right: Kriging with 

LVA. 
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Abstract  

Increasingly, environmental monitoring data become available within a few hours after data 

capture. This has motivated the development of automatic real-time mapping systems that use 

geostatistical interpolation techniques at their core. Unless one assumes that autocorrelation does 

not change over time, a central problem for such automated geostatistical interpolation is the 

automated fitting of a model for the spatial or spatio-temporal correlation of the monitoring data. 

This paper will look into efficient strategies for doing this, based on generalized least squares 

estimation.  

One common, classical kriging approach for real-time mapping algorithms involves the com-

putation of the empirical semivariogram by binning the n(n − 1)/2 semivariogram cloud values 

0.5(Z(si) − Z(sj))
2 
into distance classes, and fitting a parametric model to the binned values 

typically using ordinary least squares (OLS) or weighted least squares (WLS; Cressie 1985). The 

advantage of this method is that it is simple and fast, and it allows visual checking using an easy 

graphical diagnostic tool, the obligatory variogram plot. When applied in an automated 

algorithm, the procedure however needs to know the number and widths of the bins ahead of 

computing them, as no interactive exploration is possible. Furthermore, the N = n(n − 1)/2 

semivariogram cloud values are obtained from n observations, and thus exhibit strong corre-

lations, due to sharing common points or due to spatial vicinity, and these correlations are 

typically ignored when fitting with OLS or WLS. An alternative that does not have these two 

disadvantages is to fit a variogram model directly to the variogram cloud, using the generalized 

least squares (GLS) method (Müller 1999). Other alternatives are maximum likelihood (ML) or 

restricted maximum likelihood (REML) fitting of variogram models, but these methods make 

strong assumptions about multivariate normality that are hard to verify.  

The GLS estimation method calls for an iterative solution where each iteration needs to solve 

several N × N systems, which has rendered this method only possible for very small data sets. As 

N is proportional to n
2
, and solving a system of N linear equations is O(N

3
), the algorithm has 

complexity of O(n
6
), which is not particularly attractive for larger n. However, induced by the 
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rapid technological development of today’s high performance processors, grid and cloud 

computing infrastructures, and the availability of large amounts of cheap memory, computational 

limits have lost significance, and this method now becomes relevant for the fitting of variograms 

to moderately large data sets as well. Major questions that remain to be answered are (i) how 

much does this efficient GLS estimator improve estimation, compared to OLS and WLS 

approaches? (ii) how much advantage does it give for the case of automated variogram fitting, 

also e.g. compared to ML and REML methods, and (iii) how can efficient computer 

infrastructures be used to obtain estimates fast enough for near real-time application. A fourth 

question is whether a GLS estimator based on reduced information (e.g. by discarding large 

distances, or discarding the most redundant variogram cloud points) is still more efficient than 

OLS or WLS methods that ignore correlations.  

This paper will look into these questions by using simulation experiments for cases where the 

(generating) variogram model is known to compare efficiencies between the various methods. In 

addition, an application to a real case study (near real-time interpolation of hourly air quality 

measurements) will be demonstrated and evaluated. Finally, efficiency in terms of computational 

efficiency will be adressed, i.e., this paper will explore the possibilities to re-formulate the 

algorithm for GLS variogram estimation in a parallelized manner such that it makes appropriate 

use of the computational resources within real-time mapping systems. These may be grid 

infrastructures or highly performant graphics processing units (GPU).  

 
References  

Cressie N (1985) Fitting variogram models by weighted least squares. Mathematical Geology  

17: 563-586 Müller WG (1999) Least-squares fitting from the variogram cloud. Statistics & 

Probability Letters 43: 93-98  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             123



AUTOMATIC SEMIVARIOGRAM MODELING BY WEIGHTED LEAST SQUARES 
AND  BY CROSS-VALIDATION 

A. Govaerts1, A. Vervoort2 

1 Research unit mining, K.U.Leuven, Kasteelpark Arenberg 40 bus 2448, B-3001 Leuven, 
Belgium, annelies.govaerts@bwk.kuleuven.be, tel: +32(0)16321774, fax:+32 (0)16 321988 
2 Research unit mining, K.U.Leuven, Kasteelpark Arenberg 40 bus 2448, B-3001 Leuven, 

Belgium, andre.vervoort@bwk.kuleuven.be, tel: +32(0)16321171, fax:+32 (0)16 321988 

In a geostatistical study the correct modeling of the semivariogram is a decisive step. The fitting 
of a semivariogram to field data and the evaluation of this fit are usually done by manual fitting 
by trial-and-error of a model selected by the user, usually based on the visual appearance of the 
experimental semivariogram. According to Lamorey and Jacobson (1995) more quantitative 
methods are needed to estimate and evaluate semivariogram parameters, especially when 
assessing small changes in a variable's spatial characteristics or if limited field data are available. 

Therefore different possible automatic methods are described in this paper. The first two are 
weighted least squares methods, with different weight functions.  Also two cross-validation 
methods are developed. For this methods a procedure based on the mean square error and di 
(=σi/εi) is developed. The results of this procedure are two parameters with a value between 0 
and 1 for every semivariogram model j. The 'correct' range and nugget effect are then chosen as 
the range and nugget effect where S, the sum of these two parameters, is the smallest (see Figure 
1 for an example). The sill of the model can be calculated based on di. In that case the procedure 
is called the fully-automatic cross-validation method. But one can also determine the sill in such 
a way that the model, with the calculated range and nugget effect, fits the experimental 
semivariograms visually the best. This is called the semi-automatic cross-validation method. 

The four different modeling procedures are used in a case study, whereby the models of the 
different modeling techniques are compared with the visually determined model. The original 
dataset existed of 35 pile base resistance values at a certain depth in a tertiary sand layer in 
Belgium; resulting in a spherical semivariogram with a range of 50 m, no nugget and a sill of 
16.9 MPa2. In order to achieve a larger dataset with smaller separation distances this 
semivariogram is used for a conditional simulation of 2350 points with a separation of 1 m. 15 
subsets are chosen out of this dataset. These subsets have different separation distances between 
the data points, different starting points, and different total lengths: 
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Figure 1: Contourplot of parameter S. The range and nugget effect are determined based on the 
minimum of S (used data are from subset 8 of the case study). 

As an example Figure 2 shows the semivariogram of a dataset covering a total length of only 
50m. This is low compared to the expected range of 50m. Furthermore there are only 50 
datapoints available. For this subset, and other subsets with a low total length, the range and 
nugget effect are best determined with the cross-validation technique (see Figure 2). 

The case-study shows that generally all methods can be used to determine the semivariogram 
model. If there are enough data available and the semivariogram is easily modeled visually, the 
automatic methods do not show better results than the visual method. Of course, if one wants to 
model a lot of semivariograms, using an automatic method can provide a gain in time. 
Furthermore in a lot of casers, small datasets are available in a real study. In cases where it is 
more difficult to see a clear structure the weighted least square methods and the semi-automatic 
cross-validation method are good methods to determine the semivariogram. In terms of the 
nugget effect, the results of the cross-validation methods are better than the weighted least 
squares methods. 
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Figure 2: Experimental semivariogram values and semivariogram models of subset 2. The models 
are determined with the weighted least squares method using weight function w1 (WLS-w1) and 
weight function w2 (WLS-w2), with the fully automatic (Fully-CV) and semi-automatic cross-
validation method (Semi-CV) and visually. 

 

Lamorey G, Jacobson E (1995) Estimation of semivariogram parameters and evaluation of the 
effects of data sparsity. Mathematical Geology 27(3): 327-358 
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Abstract 

An important task in radioprotection is estimating if at a location the radon (Rn) 

concentration in indoor air exceeds a reference level. Spatial estimation and modelling of Rn 

related variables are known to be delicate due to high spatial variabilities and strongly left-

skewed (right-tailed) data distributions. For regulatory purposes one is however more 

interested in local probabilities that a level is exceeded, than in actual levels whose estimates 

are, inevitably, very uncertain given the physical nature or the variable, apart from statistical 

complications.  

In this contribution I propose modelling the probabilities on normal- (nscore-) transformed 

data. It is shown that exceedance probabilities for soil and indoor concentrations correlate 

well, and that there are optimal combinations of thresholds of soil and indoor concentration 

for achieving high correlations. Thus, if a reference dataset of Rn in soil air is available as 

indicator of the geogenic Rn potential, predictions of local Rn hazard can be made. 

Data 

We used the data set Rn concentrations in of soil and indoor air as included in the German 

“BURG” Rn database. The data are restricted to the region Oberpfalz of Bavaria, known for 

high Rn concentrations in some areas (due to geological peculiarities; not to be further 

discussed here). Indoor values are taken from ground floor measurements only. 

 

Table 1: basic statistics of the used Rn data 

 soil (kBq/m³) indoor (Bq/m³) 

no. data 500 891 

median 54 57 

range 5 … 1134 2 … 3043 

 

A uniformly distributed random noise component of 2% (below measurement uncertainty) 

was added to the concentrations to avoid tiers in rank statistics.  

Nscore transform 

If one succeeds to transform the data {zi}, i=1…N, into normal, {yi}, the wanted local 

exceedance probability at x* equals p(x*)=[prob(Z>T)](x*) = Φ((y*-τ)/sY), with Φ = 

standard normal, τ the threshold in Y-space, y* the OK estimate and sY the kriging SD in Y-

space, at x*. We assume here multi-Gaussian distribution of Y.  
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In order to achieve univariate normality the data, distributed F, were nscore transformed to 

univariate normal by y := Φ
-1
(F(z)). The problem is how to estimate the quantiles q:=F(z) out 

of the empirical data {zi}. For the “bulk” of data, q
b
i := (-.5+rank(zi))/N may be a reasonable 

choice, if enough data are available altogether, but in general not so for the “tail” data. For 

modelling the upper tail (the lower tail is of minor importance and can be treated in analogy) 

I propose the following procedure: cut the empirical distribution at qG or zG=F
-1
(qG), located 

quite high. To the data above qG, until a visually chosen upper limit, fit a power distribution 

G to the graph (zi, q
b
i), which is reasonable for many environmental datasets, including Rn; 1-

G(z)=β z
-α
; from F(zG)=G(zG) we find β, and G(z)=1-(1-F(zG))(z/zG)

-α
. The estimated 

quantile is then, qi = q
b
i, for zi ≤ z

G
; qi = G(zi), for zi ≥ z

G
 . The new data are thus built y := Φ

-

1
(q). The estimated qi for high zi depends then on the choice of q

G
 or z

G
, and also the upper 

limit. Of course, since the estimated G depends on possibly “wrong” estimates q
b
, it is still an 

imperfect estimate of the true F. 

Spatial estimation 

The such transformed data yi(soil) and yi(indoor) are subjected to point-OK independently. 

The variograms are well structured. A grid of 20 km x 20 km was chosen as reasonably 

adapted to the data spacing. The grids were blanked with deliberately chosen (after visual 

inspection) cut-off values of the kriging SDs, generating a total 974 grid points for further 

analysis. The estimated transformed soil and indoor Rn concentrations, (y(soil))* and 

(y(indoor))* at each non-blank grid node are well correlated, Figure 1. 
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Figure 1: Correlation of nscore-transformed Rn concentrations in soil and indoor air 

estimated at grid nodes.  

 

For a number of thresholds T(soil) and T(indoor) the exceedance probabilities pi:=p(Ti; soil) 

and pj:=p(Tj; indoor) are computed at each grid node. Next the Pearson correlation coefficient 

(r²), together with linear regression, is calculated for pi vs. pj. The result is shown graphically 

in Figure 2.  
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Conclusions 

We observe that local exceedance probabilities of Rn concentrations in soil and indoor air are 

well correlated, which allows, to some extent, modelling or prediction of the latter from the 

former. As Figure 2 shows, however, that given a threshold of indoor Rn whose exceedance 

probability shall be estimated, the threshold of soil Rn should be chosen carefully to enable 

optimal prediction (i.e. minimize uncertainty). For example, if one wants the model the 

probability that the indoor concentration exceeds 400 Bq/m³ (a common reference value), 

from log10(400)=2.6 we find an optimal log10(T(soil)) = about 2.2 or T(soil)=150 kBq/m³. In 

other words, optimal prediction of the indoor concentration to exceed 400 Bq/m³ is made 

from the probability that soil air concentration exceeds 150 kBq/m³.  
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Figure 2: Correlation coefficients r² between prob[C(soil)>T1] and prob[C(indoor)>T2], in 

dependence of T1 and T2. Crosses: calculated r² values in (T1, T2) space. Surface interpolated 

with local polynomials (Surfer 8 software).  

 

As next steps we plan cross-validating the method by partitioning the data into training and 

validation sets. On the side of physics, we want to investigate if the correlations can be 

improved by considering geological control and possibly anthropogenic factors related to 

house construction styles which are known to affect indoor Rn. 

As to technicalities, so far the variables soil and indoor concentration were estimated (in Y-

space) independently. If we have the technical means, we want to co-estimate them since they 

are not independent variables, as partly being controlled by the same physical source. Then 

we want to investigate the robustness of OK estimates of nscore transformed data in view of 

uncertainties in modelling the distribution tails. Further multi- (or at least approximate bi-) 

Gaussian distribution of the {yi} has to be checked, and the regressions between the two 

probabilities have to be examined in depth for linearity, influence of leverage, etc., and 

finally if there is an optimal choice of grid spacing for prediction purposes.  
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Introduction 

For more than a century, the development of the French nuclear industry has led to the 

construction and the exploitation of hundreds of facilities to produce nuclear fuel, to burn it 

through experimental reactors or nuclear power plants, and to recycle it. Dozens of them are 

now under decommissioning. 

At the end of process equipment dismantling, the complete decontamination of nuclear 

facilities requires the radiological assessment of residual activity levels of building structures. 

As stated by the International Atomic Energy Agency (2001): “Segregation and 

characterization of contaminated materials are the key elements of waste minimization”. 

In this framework, the relevance of the geostatistical methodology relies on the presence of a 

spatial continuity for radiological contamination, characterized through the variographic 

analysis (Chilès and Delfiner 1999). Geostatistics then provides reliable methods for activity 

estimation, uncertainty quantification and risk analysis, which are essential decision-making 

tools for decommissioning and dismantling projects of nuclear installations. 

However the use of the geostatistical methodology points out several theoretical issues which 

are to be taken into account like the combined integration of non-destructive surface measures 

and in-depth samples or the use of spatialized migration profiles, etc. 

The paper first presents the geostatistical methodology applied to a former nuclear facility and 

its added value as regards sampling optimisation and waste categorisation. Then it discusses 

one of the theoretical issues which is the implementation of an isofactorial model to deal with 

the observed destructuring of high values. 

 

Geostatistics for nuclear waste characterisation 

The geostatistical approach is currently applied to several former nuclear facilities of the 

“Commissariat à l’Energie Atomique” in France (Desnoyers 2009). The added value of the 

geostatistical methodology lies in (i) the optimisation of the sampling strategy according to 

the evaluation objectives, (ii) the reliable mapping of the contaminated areas using a 

cokriging estimation integrating the radiation measures as auxiliary information, and (iii) the 

                                                             130

Liesbet
Line



estimation of the corresponding waste volumes through risk analyses on conditional 

simulations. 

The ATUE (enriched uranium workshops) facility, located in Cadarache, is a case in point 

(Lisbonne and Seisson 2009). The complete dataset is constituted by more than 1,600 surface 

measures combined with 56 destructive sampling points. 

The remediation support constraint is taken into account during the calculation of the 

probability to exceed a given activity level, here each workstation area is considered as an 

effective remediation support as presented on Figure 1. Thus waste segregation can be carried 

out on these relevant decision-making tools, which make the radiological characterisation 

easier and more reliable. 

 
Figure 1: Decision-making tool for waste segregation: risk map to exceed a given activity 

level. 

 

Destructuring of high values 

Radiological characterisation within the geostatistical framework has to cope with more 

theoretical issues. In particular, the use of nonlinear geostatistical methods (gaussian 

anamorphosis, isofactorial model, disjunctive kriging, etc.) implies the assumption of several 

distribution hypotheses that have to be checked. In our case, the Gaussian-transformed 

radiological data do not conform to a multigaussian nor to a bigaussian assumption. 

Fortunately the Hermitian model provides a family of spatial behaviours from the pure 

diffusive one (bigaussian model) to the mosaic one. This family can be ruled by a positive 

parameter β which can be practically fitted on a scatterplot comparing the variogram of order 

1 (madogram) with the variogram of order 2 (classical variogram); see, e.g., Chilès and 

Delfiner (1999). A shown on Figure 2, our dataset perfectly fits with a β parameter equal to 

2.5, between the pure diffusive case (β→∞) and the mosaic one (β = 0). 
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Figure 2: Relationship between the ordinary variogram (order 2) and the variogram of order 

1 of the Gaussian-transformed data. The sample points can be fitted to a Hermitian 

isofactorial model with β = 2.5. 

 

Different approaches are then compared, whose pros and cons are discussed with regard to 

their capability in adequately modelling the spatial structure of high values: at the scale of 

each workstation the bigaussian model can be used; at the scale of a whole workshop, 

discontinuities due to wall separations can be modelled either as faults or through a Hermitian 

isofactorial model. 
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Abstract 

Traditionally studies of exposure have linked the concentrations of air pollutants with static data 

on population density. The spatial and temporal variation in population densities which is a result 

of traffic is often simply ignored even though traffic is a major source of urban emissions. A new 

class of traffic models, activity-based transport demand models (Davidson et al 2007; McNally 

2000), can predict where people will perform specific activities during the day. These models 

can also be used to provide the traffic data (associated with the trips to these activities) needed to 

model ambient pollutant concentrations with a dispersion model (Shiftan 2000). In this way a 

truly dynamic exposure analysis can be made by geographically matching hourly concentrations 

and hourly population densities. Further, more detailed exposure analyses can also be performed, 

focusing on the differences in exposure between different activities and different subpopulations. 

These results have the potential to provide useful information for policy purposes. 

In this paper we demonstrate for the first time that this activity-based approach can be used to 

evaluate the impact of general policy measures, not specifically aimed at reducing the exposure 

of the population, on people’s exposure (Int Panis 2010). Our hypothesis is that policies that 

seem unrelated to either the transport or air quality domain may nevertheless have an unintended 

secondary impact on exposure to traffic emissions. The modeling framework will be summarized 

in a nutshell since this is not the main focus of this paper. An extensive description of the 

framework can be found in Beckx et al. (Beckx et al 2009a; Beckx et al 2009b; Beckx et al 

2009c). 

In a first phase, the activity-based transport model ALBATROSS was used to predict activity-

travel patterns for the Dutch population (Arentze and Timmermans 2000; Arentze and 

Timmermans 2004). The model started by developing a synthetic population for The Netherlands 

and activity-travel schedules were simulated for all the individuals within this population. Next, 

the predicted trips for the entire population were assigned to a road network and traffic flows 

were converted into vehicle emissions by applying the emission factor approach from the 

MIMOSA emission model. 
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In a second phase, the activity-based approach was further extended by converting the emissions 

into pollutant concentrations. For this purpose, the AURORA model was applied to simulate the 

dispersion and conversion of the emissions into concentrations. 

And finally, in the last phase, population exposure analyses were performed. The predicted 

hourly concentration fields from the ALBATROSS-MIMOSA-AURORA modelling chain were 

combined with hourly information on people’s location to calculate the exposure. By using the 

population information from the activity-based simulation, hourly population maps were 

simulated and dynamic exposure values could be estimated. 

The scenario considered here involves a 

widening of shop opening hours for daily and 

non-daily shopping. In the scenario shops are 

open from 6 a.m. until 10 p.m., which allows 

shopping activities earlier in the morning as well 

as shopping later in the evening. After changing 

these institutional constraints in the activity-

based model, every stage in the modelling 

framework is passed through once again. By 

analyzing the output, the effect of changing shop 

opening hours on the population level exposure 

to NO2 in different time-periods, on different 

locations, for different subpopulations (e.g. 

according to gender or socio-economic status) 

and during different activities (residential, work, 

transport, shopping, leisure, …) can be 

evaluated.  

The scenario leads to a considerable increase of 

up to 6% in time spent on non-daily shopping 

activities. We can see an increase in transport 

time as well, although the effect is smaller. This 

augmentation is offset by less time spent on 

leisure and in-home activities. Another effect 

that propagated from our data is the shift of 

shopping activities towards the early and late 

hours of the day. 

An evaluation (both geographically and 

statistically) of the differences between the 

scenario and the reference situation gives 

insight into the impact of the scenario on the 

population distribution across postal code areas, 

Figure 1: The dynamic population is computed for 

each postal code area. For every hour of the day 

concentration levels for NO2 are calculated on a 3 

x 3 km² grid. Multiplying those two sets of data 

gives the total exposure. The maps show the 

difference between the scenario and the reference 

situation. (Monday April 4
th
 2005, 5 p.m., 

Amsterdam region, The Netherlands) 
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the impact on the concentrations and finally on the total exposure of people in each 

municipality. In figure 1 this is illustrated for a random hour in April. As an example, on the first 

Monday in April at 5 p.m., concentrations will rise in certain neighbourhoods with a substantial 

0,30 µg/m³. In addition to this, from our data we can conclude that the overall exposure of the 

population in the Netherlands will rise as a consequence of the scenario. Depending on the hour 

of the day, an average increase of population exposure to NO2 of 0,5% is seen. 

 

Examples of measures or scenarios that can be evaluated by such an approach are changing shop 

opening hours, ageing of the population, teleworking, introduction of congestion charging, etc…. 

This paper presented the first analysis of a scenario generated with the activity-based model 

ALBATROSS. We demonstrated that by using this approach the effect of a policy measure on 

population exposure can be assessed. 
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In geostatistical applications the spatial dependence structure is traditionally described with the 

help of variograms or covariance functions. These however are strongly influenced by the 

distribution of the related variables under investigation. Variograms calculated from highly 

skewed data are often dominated by a few outlying observations. Indicator geostatistics can be 

used to overcome this problem. Indicator variograms often reveal specific dependence structures, 

for example very different ranges for high or low values. Indicator kriging or indicators 

simulations can take these differences into account, but the theoretical variogram parameters 

have to be estimated for each considered cutoff. Further due to the incompleteness of the model 

the estimated distribution functions might require corrections to become monotonic.  

The transformation of the observed values to a uniform distribution using their marginal 

distribution function offers another possibility. Multivariate distributions with uniform marginals 

are called copulas. Their formal definition of a copula is: 

                      
which means that probability corresponding to any n dimensional hypercube has to be non 

negative. 

Copulas can describe the dependence of multivariate distributions with any kind of marginal 

distributions. Sklar proved that each continuous multivariate distribution F(x1; : : : ; xn) can be 

represented with the help of their copula C and the corresponding marginal distributions: 
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where )(tF
it

represents the i-th one dimensional marginal distribution of the multivariate 

distribution. If the marginal distributions are continuous then the copula C in (2) is unique. 

Hence, copulas can be regarded as the expression of the dependence without the influence of the 

marginal distributions. 

Copulas are frequently used to describe multivariate dependence in problems encountered in 

finance and the economy. In geostatistics the use of the copulas offers a possibility to describe 

spatial dependence independently from the marginal distributions. In place of variograms and 

covariance functions, bivariate empirical copulas, corresponding to separation distances and 

directions are calculated and used to gain insight into the dependence structure. The data are 

transformed using the distribution function F of the observed values to the uniform distribution. 

These transformed data are then directly used to construct bivariate empirical copulas. 

For the quantification of the dependence structure empirical rank correlation functions, and 

measures of asymmetrical dependence can be calculated from these empirical copulas to quantify 

the strength and the form of spatial dependence. The asymmetry of a copula can be defined as: 

                      

where c is the density of the copula C. 

The asymmetry can be calculated from the observed values corresponding to different vectors h: 

 
As the Gaussian is symmetrical A = 0 the asymmetry function can be used to detect deviations 

from the Gaussian dependence. Simulation can be used to find the confidence limits for the 

asymmetry of a Gaussian dependence - which then can be used to check if the Gaussian 

dependence can be rejected. The traditional normal score transformation assumes a Gaussian 

copula.  

Examples from groundwater quality parameters and rainfall data show how the real inter-

dependence can be understood using copula-based measures in contrast to how it is distorted 

through skewed marginals when using variograms and covariance functions. Easy to visualize 

bivariate copulas often show unusual dependence of the variables for different ranges of the 

investigated values. The dependence is often asymmetrical; for example high values might be 

strongly related, while low values are only weakly linked. 

Many natural variables, such as topographical surfaces, rainfall, groundwater quality parameters 

and soil hydraulic conductivity, show asymmetrical spatial dependence. If an asymmetrical 

dependence is observed, a normal score transformation of the variable is not appropriate, so that 

other multivariate assumptions have to be applied.  
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In order to perform interpolation, unconditional or conditional simulations a theoretical copula 

model has to be selected and its parameters have to be estimated from the observations. The 

multivariate copulas which can be used to describe the spatial dependence have to fulfill a few 

assumptions. These include spatial stationarity of the dependence structure and invariance of the 

multivariate distributions with respect to their multivariate marginals. Furthermore the 

multivariate copula should allow the spectrum from full dependence through to independence of 

the corresponding variables. 

Non-Gaussian copula models which fulfill the above conditions can be obtained through selected 

transformations. One possibility is to use non monotonic transformations of the marginals of a 

multivariate Gaussian distribution, and to use the copula of the resulting distribution. Another 

possibility is to transform the copula densities of known multivariate distributions using periodic 

functions. Both approaches allow the description of the dependence using only a few additional 

parameters. On the other hand the calculation of the corresponding distributions is numerically 

demanding. The copula parameters can be estimated using a partition of the observations into 

multipoint subsets followed by an appropriate maximization of the corresponding likelihood 

function. 

Interpolation of arbitrary quantiles can be performed using copulas. The fully conditional 

copulas provide the distribution functions for estimation at the unobserved location. They can be 

used to calculate medians, means or to define confidence intervals which depend on both the 

observed data values and geometry. The quality of the estimators and the conditional 

distributions may be verified using cross validation or split sampling approach. Using the full 

estimated conditional distributions a sequential conditional simulation can be set up.  

Maps obtained by copula based interpolation often do not differ considerably from other 

geostatistical interpolation results. The main difference is in the corresponding confidence 

intervals which provide a realistic estimator for the interpolation uncertainty. 

Examples, ranging from small scale soil samples through regional aquifers, large scale weather 

fields and landscapes from Mars are used to demonstrate the occurrence of non-Gaussian fields 

and to show the steps of a copula based investigation of spatial data. 
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Individual exposure modelling 

Relations between negative health effects like cardio-vascular diseases, asthma and lung 

cancer and elevated levels of air pollution are detected in several large scale exposure studies 

(e.g. Brunekreef and Holgate, 2002). However, correlations found in these studies are based 

on summary health statistics and annual air quality measurements over a city. It is likely that 

the causality on the individual level looks differently when the inhaled dose of the airborne 

pollutant could be related to direct health outcomes. Instead of performing time- and 

resource-consuming personal measurements, modelling of individual exposure to air 

pollution is commonly used to estimate the true exposure. This requires the combination of 

two types of information: concentration fields and individual trajectories. Whereas the first 

one is usually obtained by applying deterministic models to estimate the spread of air 

contaminants, the latter one is increasingly gathered by tracking devices such as GPS 

receivers providing precise positions in space and time for the trajectories, e.g., of persons 

difficult to track by diaries (Elgethun et al., 2007). Having data of individuals on such a high 

spatio-temporal resolution requires air pollution data on the same resolution. This yields the 

problem of higher uncertainties for the air pollution modelling at the higher resolution due to 

limitations of modelling techniques and data availability. Here, the question turns up on 

which scale or aggregation level in space and time we can still make sensible conclusions and 

reveal significant differences in the exposure between individuals, given uncertainties in air 

pollution estimates. In this paper, we will focus on the uncertainties and the effect of 

combining data at different scales when modelling individual exposure to air pollution. 

 

Representation and sources of uncertainty 

The concentration C(t,s) of an air pollutant is a spatio-temporal variant phenomenon and is 

commonly represented by modelled or interpolated grids for discrete time steps, with the grid 

cell value representing a spatially and temporally averaged estimate of the true concentration. 

For C(t,s) attribute uncertainties are often dominant to positional and temporal uncertainties 

due to the relatively coarse scale of modelling. Excluding explicit street canyon models, the 

scale of air quality models is usually a few hundreds of meters and larger than 15 min. The 

main uncertainties are caused by the imperfect dispersion or interpolation model and 

assumptions that have to be drawn throughout the model process.  

Individual trajectories I(t,s) are space-time paths as defined by Hägerstrand (1970). Their 

representations used for exposure modelling are discrete points (locations) in space and time, 

e.g., GPS tracks. By definition only positional and temporal uncertainties can occur for I(t,s), 

as the only attributes are position and time. For GPS data the spatial uncertainty usually lies 

within 3 to 5 m and the temporal < 1 sec.  

*Corresponding author: Lydia.Gerharz@uni-muenster.de 
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Quantified uncertainties are characterised by their probability distribution functions which are 

joint probabilities if the variables are correlated which is the case for both data types 

(Heuvelink et al., 2007). By combining these two datasets, it is obvious that in this case the 

uncertainty of the GPS tracks is negligible compared to that of the concentration estimates. 

Furthermore, the uncertainty of the concentration is the uncertainty of the grid cell average 

which cannot be simply transferred to the individual exposure as shown in the next section. 

 

Change of support 

Drawing conclusions from the relation of two data sets with different scales leads to the 

problem of ecological inference. Robinson (1950) showed that a correlation of two 

aggregated variables does not have to be valid for the individual variables. Thus, in our case, 

the causality between health burdens of urban populations and elevated ambient air pollution 

does not allow conclusions about the causality between the individual exposure and health 

effects of a random inhabitant from the cities. Young and Gotway (2007) classified the 

ecological inference problem as a special case of the change of support problem. Spatial 

support is defined as the physical size, shape and orientation of the considered variable. In the 

case of exposure modelling the support of the air pollution model is the size of the grid cells. 

Individual position and exposure are very small and treated as point support. Thus, the 

support of C(s,t) >> I(s,t). Aggregation of the individual positions is not feasible as usually 

only a small fraction of possible points within a grid cell are visited. Therefore, 

disaggregation of the cell average is necessary to estimate concentration at point locations 

which demands further information about the variability within the grid cell. 

In fact, the uncertainty of the exposure experienced in a grid cell crossed by an individual 

depends on the within-variability of the concentration in the grid cell. The within-variability 

can be described by a geostatistical model of spatial autocorrelation ρ(h) for different lags h 

between the points. A stronger autocorrelation between points up to lags h larger than the grid 

cell size yield less within-variance for the cell so the cell mean is more representative for the 

point values. In the extreme case of ρ(h)=1 for all lags, the points correlate perfectly. The cell 

mean would be the same as for the points and the uncertainty of the cell mean is the only 

uncertainty of the point values. The other extreme ρ(h)=0 would mean that all points are 

varying completely at random (white noise) within the cell, which would yield for individual 

points an uncertainty equally to the within-grid cell variance times the uncertainty of the 

mean. For the latter case aggregating over a larger number of points per grid cell would 

average out the uncertainty completely whereas for the former case the uncertainty between 

simulations remains large.  

 

Case study/Illustrative example 

As an illustrative example for the change of support effect we combined ambient air quality 

data from a deterministic model with individual trajectories, recorded by GPS. Fig. 1 shows a 

map for Münster, Germany with estimated 1 hour averaged PM10 concentrations for 250 x 

250 m² grid cells and a 1 h GPS track with tracked positions every 5 sec. Uncertainties of the 

cell average and temporal uncertainties were not included here. 
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The spatial autocorrelation of the points in each cell is assumed to be only dependent on the 

distance h between the points and is represented by: 








 −
a

h
exp=ρ(h)  

Three exponential variogram models were created using the 

variance σ² estimated from a set of mobile measurements and three 

different strengths for ρ(h) 

ρ(h)hCCh 22)()0()( σσγ −=−=  

For each GPS point 1000 samples were calculated using 

unconditional Gaussian simulation.   
Figure 1. PM10 map of Münster with GPS track. 

 
Figure 2. Distribution of exposure means over the whole GPS track for each simulation using variogram models with different spatial 

autocorrelation (weak: a=10;medium: a=50; strong: a=200). 

The results for the GPS track in fig. 2 show clearly an increase in variability for the 

simulation averages with increasing strength of autocorrelation. Thus, averaging over a larger 

number of points reduces uncertainty faster if autocorrelation is weak. However, for a single 

point in a grid cell, the uncertainty depends mainly on the within-grid cell variability. 

Methods to assess the spatio-temporal autocorrelation and within-grid cell variances by using 

covariates for prediction are essential to reduce uncertainties in individual exposure 

modelling and are under current development. 
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Introduction/Background 

Oxides of nitrogen (NOx) can have a negative health impact on persons already susceptible to 

respiratory illness. NOx is defined as a group of pollutants, one exemplar pollutant being 

nitrogen dioxide (NO2). These pollutants have a strong link with the fuel combustion 

processes and secondary pollutant formations associated with transport networks (Carslaw 

and Beevers 2005). Dispersion modelling is currently used to generate mapped air pollution 

outputs in the UK. It is hypothesised that geostatistical analysis can aid the mapping process 

by accounting for the potential variation not explained through dispersion modelling. The 

study area was the UK and the primary dataset consisted of NO2 data from automatic 

monitoring and NO2 data derived using diffusion tubes. Annual mean levels (measured in 

µgm
-3
) for each location were derived from automatic monitoring and diffusion tubes. The 

secondary dataset consisted of NOx data (measured in µgm
-3
)  derived from dispersion 

modelling of emissions. It is available from UK Air Quality Archive (www.airquality.co.uk) 

and appears as a 1km × 1km gridded output for the study area. Dispersion modelled data 

were available at 1km × 1km scale for the UK, making this an exhaustive secondary dataset. 

The locally strong relationship between NOx and NO2 means that regression can be used in 

conjunction with geostatistics with the potential to generate more accurate pollution maps 

than can be provided by dispersion modelling alone. Previous work using such techniques 

includes Goovaerts (2000) and Lloyd and Atkinson (2004).                

Methods 

Variograms for geostatistical analysis were estimated and modelled using the Gstat software 

(Pebesma and Wesseling 1998). Ordinary Kriging (OK) (Isaaks and Srivastava 1989) was 

performed on the primary dataset as a 'baseline' approach. Simple Kriging with locally 

varying mean (SKlm) (Goovaerts 1997) was examined using different methods for deriving 

the varying local means. Global regression (GR) and geographically weighted regression 

(GWR) using various bandwidths (Fotheringham et al. 2002) were performed, with the 

corresponding predictions serving as the varying local means. Moving window regression 

(MWR) and global ordinary least squares (OLS) were also investigated for their use as 

locally varying means (Lloyd 2006). Alternative geostatistical methods to SKlm explored 

were collocated co-kriging (Collocated CK) and kriging with an external drift (KED) 

(Goovaerts 1997). Routines from Geostatistical Software Library (GSLIB) (Deutsch and 

Journel 1998) were used for kriging. Cross validation prediction errors were computed for 

comparison of techniques.    
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Hybrid approaches can be beneficial, particularly in examples such as this case study where 

the primary dataset is sparse and the secondary dataset is exhaustive. Hengl et al. (2007) 

highlighted the potential value of hybrid approaches, such as kriging and linear regression 

and expressed the benefits through numerous case studies. This study demonstrated the 

versatility of hybrid approaches and their potential cross-disciplinary application. Such 

approaches are further verified by the work of Lloyd and Atkinson (2004) and Goovaerts 

(2000) who used multivariate hybrid approaches in their analyses, yielding positive increases 

in accuracy in comparison to other techniques. Following on from the work of the 

aforementioned authors this study incorporated hybrid approaches.           

 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The results section displays estimates based on data for N.Ireland. Figure 1 shows the NO2 

pollution map derived from the primary dataset, using OK. The highest concentrations are 

located in the Belfast Urban Area (in the mid east area) and in the south and east of county 

Antrim. It can be observed from the map that there are too few data points in the primary 

dataset to produce an accurate representation of air pollution in the region. The root mean 

square error (RMSE) for OK was 5.528 µgm
-3
, which is larger than the RMSE value for 

SKlm with local means derived using GWR with a 100km bandwidth, which was 3.878 µgm
-

3
. Similarly other cross validation error statistics such as the maximum, minimum, mean and 

standard deviation are all greater than the equivalent values for SKlm GWR with a 100km 

bandwidth (or further from zero in the case of the mean). Figure 2 shows the NO2 pollution 

map derived from using the exhaustive secondary dataset in conjunction with the primary 

dataset, using SKlm with local means derived using the local regression method GWR. This 

figure is intuitively more realistic than Figure 1, as the road network is clearly visible, which 

would be expected of a pollutant whose formation and production have strong links to the 

transport network. The benefits of having the exhaustive secondary dataset are clear both 

 
 

Figure 1: OK map of NO2 from 

primary dataset in N.Ireland 

 

Figure 2: SKlm map of NO2 with local means 

 derived from GWR with a 100km bandwidth  

(using both primary and secondary datasets) 

in N.Ireland   
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intuitively through the visual comparison of both concentration maps, but also through the 

cross validation prediction error statistics.    
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Abstract  

This study investigates creative, cross-disciplinary interaction of spatiotemporal geostatistics 

with a non-geostatistical methodology. Spatiotemporal prediction is employed to provide the 

foundation for the so-called spatialization transformation in the field of geographic analysis.  

This sequence of steps begins with the geostatistical analysis of monthly-averaged nitrogen 

dioxide (NO2) and mean annual sulfate (SO4) observations in California over a 15-year study 

period between 1988 and 2002, and results into a lower-dimensional geometric representation 

of these pollutants. This composite approach combines the Bayesian Maximum Entropy 

(BME) methodology to perform geostatistical prediction, and spatialization to make high-

dimensional spaces accessible to human cognition through processes of dimensionality 

reduction and symbolization. The proposed blending reveals new patterns and relationships 

suggested by the original data, provides new perspectives and broadens our understanding of 

environmental attributes, as shown in the present study of the NO2 and SO4 air pollutants.  

 

Data and BME spatiotemporal prediction  

The California Air Resources Board (CARB) provided two data sets of monthly-averaged 

NO2 measurements from 137 monitoring sensor locations, and annual averages of SO4 

measurements from 166 monitoring sensor locations for the 15 years between 1988 and 2002.  

A separate geostatistical analysis was performed for each pollutant data set to predict the 

pollutant values on a spatiotemporal regular grid. The spatial grid encloses the state of 

California and consists of 21x24 spatial nodes, and the temporal grid consists of 180 monthly 

temporal instances for NO2 and 15 annual temporal instances for SO4. The predictions are 

used consequently as the input for the spatialization analysis.  

The geostatistical analysis step enabled us to overcome the data sparseness and heterogeneity 

in space and time, to explore the underlying correlations in the pollutant observations, and to 

provide predicted values on the specified grid. To this end, we used the BME methodology, 

which has been employed in atmospheric studies (e.g., Bogaert et al. 2009; Christakos et al., 

2004; Christakos and Kolovos, 1999) for accurate prediction of atmospheric attributes across 

space and time by successfully assimilating input from sensor measurements, a variety of 

certain and uncertain observations, and physical laws. In the present study, the prediction 

results yield informative maps of the two pollutants and their distributions at all locations in 
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space and time on the specified grid. For illustration, Figure 1 displays maps of the mean of 

the predicted distributions (BMEmean) for both pollutants at selected instances.  

 
Figure 1: BMEmean for monthly-averaged NO2 and annual-averaged SO4 concentrations 

across California at selected time instances.  The pollutant concentrations are in ppb units.  

The plot shows the NO2 predicted distributions means at months (a) January 1988 and (b) 

July 1988, and the SO4 predicted distributions means at years (c) 1988 and (d) 1989.  

 

Spatialization analysis  

The gridded geostatistical output makes it possible for the spatialization methodology to 

apply its analytical techniques for the reduction of its input into a lower-dimensional space 

(Skupin and Fabrikant 2008). In particular, the original multiplicity in dimensions comes 

from dealing with sensors at L geographic locations, and taking measurements of A attributes 

at T different times. This leaves us with a single set of L*A*T observations (an LAT data set). 

One can now systematically explore this tri-space of LAT values by constructing a series of 

matrices in which rows and columns are constructed from combinations of tri-space 

elements.  

Depending on what combinations are considered, the same set of L*A*T observations could 

be transformed into six different matrices of the LAT source data by rearranging the original 

input values. Each matrix allows different questions to be explored about the data and the 

similarities of location-attribute composites; for example, one could ask whether NO 2 

concentrations at one location have behaved over time similar to SO4 locations at another 

location. To answer such questions, the dimensionality of row vectors is almost always too 

large to be directly plotted. The method of self-organizing maps (SOM) is used to perform a 
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type of dimensionality reduction when dealing with very voluminous and high-dimensional 

data sets (Kohonen 2001). An example of dimensionality reduction with spatialization is 

shown in Figure 2, which presents monthly NO2 values for 1988-2002 as 12-dimensional 

vectors. The component planes in Figure 2 illustrate the dominant pattern of November 

through January as corresponding to the highest NO2 concentrations, no matter what the 

absolute values are.  

 
Figure 2: Monthly NO2 values for 1988-2002 modeled as 12-dimensional vectors, with each 

cell contributing 15 separate vectors. The 12 component planes are shown, with low-high 

values indicated as a blue-red color range. 
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This paper presents a methodology to model spatio-temporal uncertainties associated to the 

dis-aggregation of sectoral emissions of primary air pollutants in Luxembourg. We apply it to 

an integrated energy-air quality assessment tool for the urban and regional scale (Zachary et 

al., 2010). National aggregated sectoral emissions of primary air pollutants are computed by 

an energy model which minimises the cost of the reference energy system. The model 

describes five sectors, i.e. agriculture, transport, industry, residential and commercial at five-

year periods. The sectoral emissions are allocated in space and time to obtain hourly to daily 

emission maps. The air quality model simulates the dispersion of the emitted pollutants and 

their chemical reactions to produce ozone for typical episodes for each five-year period. Both 

models are coupled by means of an oracle-based optimisation method to find the optimal 

energy system with a constraint on ozone concentrations.  

 

When dis-aggregating emissions from the national scale to the urban scale, small scale 

variation and its associated uncertainty within and across land-use boundaries have to be 

modelled in order to obtain realistic spatio-temporally distributed emission maps. In a 

previous work we modelled the spatial uncertainty without considering a temporal correlation 

(Leopold et al., 2010). Now, we propose to extend it to the temporal approach. 

 

We decompose the emission value into its mean, standard deviation and a spatio-temporally 

correlated error term. The mean and standard deviation depend on land use and transportation 

whereas the error has zero mean and unit variance and has a variogram that only depends on 

distance in time and space between points. The spatio-temporal error can be modelled by 

stochastic simulation assuming a space-time semi-variogram with local and regional scale as 

well as short-term and long-term scale variability to account for within-boundary and across-

boundary variation as well as hourly and daily variation (Bierkens et al., 2000). A Monte 

Carlo approach is used to simulate the spatio-temporally correlated error and its distribution 

for each grid cell at each time step. 

 

Finally, the average dis-aggregated emission value and its corresponding ``local'' uncertainty 

can be computed for each grid cell accounting for space-time correlation at different scales 

and across land-use boundaries. The underlying assumptions made, influence the results of 

the dis-aggregation approach. Different assumptions are compared and discussed. Once 
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uncertainties are assessed, the dis-aggregated emissions and its associated space-time 

uncertainties can be incorporated in an uncertainty propagation analysis of the air-quality 

model or a stochastic version of the energy optimisation algorithm. 
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Introduction 

A common issue in spatial interpolation is the combination of data measured over different 

spatial supports. For example, information available for mapping disease risk typically 

includes point data (e.g. patients residence) and aggregated data (e.g. socio-demographic and 

economic data at the census track level). Similarly, soil measurements at discrete locations in 

the field are often supplemented with choropleth maps (e.g. soil or geological maps) that 

model the spatial distribution of soil attributes as the juxtaposition of polygons (areas) with 

constant values. This paper presents a coherent geostatistical framework to accommodate 

both areal and point data in the spatial interpolation of continuous attributes. The procedure is 

illustrated using two datasets: 1) geological map and heavy metal concentrations recorded in 

the topsoil of the Swiss Jura, and 2) incidence rates of late-stage breast cancer diagnosis per 

census tract and location of patient residences in Michigan (Figure 1). 

 

Figure 1: Information available for mapping topsoil heavy metal concentration and late-

stage breast cancer incidence. (A) Soil field measurements. (C) Choropleth map of the main 

geological formations. (B) Location of 937 patient residences. (D) Choropleth map of late-

stage breast cancer incidence rate in three Michigan counties, by census tract, 1985-2002. 
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Figure 2: Maps of chromium concentration and late-stage breast cancer incidence rate 

created by alternative interpolation techniques. (A,B) Ordinary kriging. (C,D) Kriging that 

combines both areal and point data “AAP kriging”. (E,F) Residual kriging with a choropleth 

trend model. The same color scale is used for each series of three maps. 

 

Results and discussion 

The interpolation approach capitalizes on: 1) a general formulation of kriging that allows the 

combination of both point and areal data through the use of area-to-area, area-to-point, and 

point-to-point covariances in the kriging system, 2) the availability of GIS to discretize 

polygons of irregular shape and size, and 3) knowledge of the point-support semivariogram 

model that can be inferred directly from point measurements, thereby eliminating the need for 

deconvolution. For health data, the kriging system includes an error variance term derived 

according to the binomial distribution to account for varying degree of reliability of incidence 

rates depending on the total number of cases recorded in those tracts.  

Fig. 2 (left column) shows the maps of chromium concentration estimated using 

alternative interpolation techniques. The reference approach is ordinary kriging (OK) that 
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uses only field data (Fig. 2A). The other two maps incorporate areal data that take the form of 

average chromium concentration per geological mapping unit. These concentrations were 

used either as local means in residual kriging or directly incorporated into the Area-and-point 

estimator. In the later case, the average of kriged estimates equals the mapping units’ mean 

(coherence constraint). The residual semivariogram model has a short range, leading to 

“bull's-eye” effect around sample points in the map created by residual kriging (Fig. 2E). In 

contrast, the AAP map (Fig. 2C) is much smoother and clearly displays the lower 

concentrations expected on the Argovian formation. Differences between the three maps are 

the largest in sparsely sampled areas where the choice of a trend model becomes 

preponderant. In particular, incorporating the geological information leads to smaller 

estimates on the section of Argovian formation where no sample was collected (dashed circle 

in Fig. 2C) and in a small Argovian mapping unit that must satisfy the coherence constraint 

despite the presence of larger concentrations recorded in the field (solid circle in Fig. 2C).  

A similar analysis was conducted for the health outcome data in Figs. 1B-D. All 

incidence maps were created using the 32 closest point indicator data and, for AAP kriging, 

the rates recorded in census tracts that share a boundary or vertex with the tract including the 

interpolation node (1st order adjacency). Incorporating census-tract information through 

residual kriging adds more details to the map but generates discontinuities at the tract 

boundaries. On the other hand, accounting for adjacent areal data in AAP kriging leads to a 

map that has more compact spatial features than the indicator kriging map.  

The performance of the proposed approaches, relatively to ordinary kriging or a 

traditional residual kriging with choropleth trend model, is assessed using jackknife. 

Performance criteria include the magnitude of prediction errors, the accuracy of the model of 

uncertainty, the smoothness of interpolated maps, and the ability to discriminate between 

early and late-stage cancer cases. Results demonstrated the overall better prediction 

performance of AAP kriging over ordinary kriging and residual kriging with the choropleth 

map trend model. In particular when sampling is sparse, incorporation of areal data improves 

the prediction accuracy while the exactitude property of areal data decreases the smoothness 

of interpolated surfaces. 

 

Conclusions 

The ability to combine data measured at various scales and over different spatial supports in 

kriging is becoming a pressing need, in particular as the field of geostatistical applications 

now encompasses social and health sciences. Whereas the first analytical developments of 

kriging clearly demonstrated its flexibility to accommodate different measurement and 

prediction supports, geostatistical analysis of a mixture of point data and irregular blocks has 

rarely been implemented in practice, mainly because of its lack of application in mining. Joint 

advances in GIS software and computational resources now allow the application of kriging 

to the complex geographies found in social and health sciences. In addition, the recent 

development of binomial and Poisson kriging allows one to take into account both the spatial 

extent of the geographical unit and the size of the population under study within that unit (i.e. 

number of breast cancer cases) in the interpolation. 
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The recent increase in the prevalence of obesity is widely recognized as constituting a major 

threat to health in most countries, as obesity reached epidemic proportions globally, with 

more than 1 billion adults overweight according to the World Health Organization (WHO) 

(World Health Organization (WHO) 2010). The prevalence of overweight and obesity is 

commonly assessed by using body mass index (BMI), defined as the weight in kilograms 

divided by the square of the height in meters (kg/m
2

). A BMI over 25kg/m
2 

is defined as 

overweight, and a BMI of over 30 kg/m
2 

as obese, resulting in a response variable with more 

than two categories (World Health Organization (WHO) 1995; World Health Organization 

(WHO) 2000; Ogden et al. 2007).  

The number of studies on obesity increased significantly, mainly by the high risk that this 

condition leads to patients with other chronic diseases such as diabetes and hypertension 

(Mokdad et al. 2001; Resta et al. 2001; Peeters et al. 2003). Therefore, studies about the risk 

of obesity, to consider factors other than those already widely studied, have been proposed. 

As an example we can cite the inclusion of location variables to identify obesogenic 

environment (Drewnowski et al. 2007; Zangirolani 2009) and studies on food supply (Hill et 

al. 1998; Mokdad et al. 2001; Young et al. 2002).  

Although risk measurement is widely used in epidemiology, the estimates of relative risk for 

variables with more than two categories is not yet part of the statistical analysis for many 

studies in this area, mainly when we use spatial analysis. The multinomial approach allows to 

research, in a single analysis, the association for each class observed. Furthermore, to 

estimate the spatial risk of a disease in a given region, we also include variables indicating 

location, which in this study are the geographic coordinates. As an application of this method, 

this study aims to identify the spatial distribution and risk of overweight, classified as 

eutrophic+underwieght, overweight and obese, according to World Health Organization 

criteria.  

 

 Methods  

A cross-sectional study was conducted with 651 local residents in a municipality in Southeast 

Brazil. We applied a standardized questionnaire containing socio-economic information, and 

anthropometric measurements were obtained in the interview. A generalized additive model 

(GAM) that analyzes the risk related to spatial dependence, considering more than two levels 

of the response variable was applied (Kelsall and Diggle 1998). Specifically, the cumulative 

logit model was selected (Ananth et al. 1997).  
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Results  

The prevalence of overweight was 54.2%, with 21.5% of whom obese. Most of the sample 

were women (55.8%), mean(sd) age was 41.6(12.5) and education measured by years of 

study was 8.6(4.2).  

Figure 1 shows the estimated spatial risks via GAM using cumulative model with three 

categories. We compared the risk for obesity in relation to eutrophic and overweight (Figure 

1-a), and the risk for obesity and overweight comparing to eutrophic (Figure 1-b). Taking into 

account areas where there is a resident population (represented by streets), note that there is 

an increased risk of obesity in the Northeast and low risk, or protection, to the Western region 

(Figure 1-a). Furthermore, when we look at risk of overweight, which includes obesity, and 

make a comparison with normal weight, we identify risk areas to the Northeast and 

Northwest (Figure 1-b).  

 

 
Figure 1: Spatial Risk for Overweight. Region of a city in Southeast Brazil, 2007. 

a) Risk for Obesity (BMI ≥ 30kg/m
2

)         b) Risk for Overweight (BMI ≥ 25kg/m
2

) 

 

Discussion  

The results identify geographical areas of higher and lower risk for overweight and obesity, 

setting the existence of a spatial component in the obesity epidemic in this region, allowing 

better clinical and Public Health interventions. New studies on the calculation of significance 

for the risk estimates are being made. In addition, forms of inclusion of covariates in the 

spatial analysis that also explain the distribution of the disease are in development.  

 

References  

Ananth, C. V. and D. G. Kleinbaum (1997). "Regression models for ordinal responses: a 

review of methods and applications." Int J Epidemiol 26(6): 1323-1333.  

Drewnowski, A., C. D. Rehm, et al. (2007). "Disparities in obesity rates: analysis by ZIP 

code area." Soc Sci Med 65(12): 2458-2463.  

Hill, J. O. and J. C. Peters (1998). "Environmental Contributions to the Obesity Epidemic." 

                                                             155



 

Science 280(5368): 1371-1374.  

Kelsall, J. E. and P. J. Diggle (1998). "Spatial variation in risk of disease: a 

nonparametric binary regression approach." Journal of the Royal Statistical Society 

(Series C): Applied Statistics 47(4): 559-573.  

Mokdad, A. H., B. A. Bowman, et al. (2001). "The continuing epidemics of obesity and 

diabetes in the United States." JAMA 286(10): 1195-1200.  

Ogden, C. L., S. Z. Yanovski, et al. (2007). "The epidemiology of obesity." Gastroenterology 

132(6): 2087-2102.  

Peeters, A., J. J. Barendregt, et al. (2003). "Obesity in adulthood and its consequences for life 

expectancy: a life-table analysis." Ann Intern Med 138(1): 24-32.  

Resta, O., M. P. Foschino-Barbaro, et al. (2001). "Sleep-related breathing disorders, loud 

snoring and excessive daytime sleepiness in obese subjects." Int J Obes Relat Metab Disord 

25(5): 669-675.  

World Health Organization (WHO) (1995). Physical Status: the use and interpretation of 

anthropometry. WHO Technical Report Series. R. o. W. E. Committee.  

World Health Organization (WHO) (2000). "Obesity: preventing and managing the global 

epidemic. Report of a WHO consultation." World Health Organ Tech Rep Ser 894: i-xii, 1-

253.  

World Health Organization (WHO). (2010). "Obesity and Overweight." Retrieved 

18/02/2010, 2010, from 

http://www.who.int/dietphysicalactivity/publications/facts/obesity/en/.  

Young, L. R. and M. Nestle (2002). "The contribution of expanding portion sizes to the US 

obesity epidemic." Am J Public Health 92(2): 246-249.  

Zangirolani, L. T. O. (2009). Topologia do excesso de peso no Distrito Sul de Campinas, São 

Paulo. Faculty of Medical Science. Campinas, State University of Campinas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             156



 

RELATIVE RISK ESTIMATION FOR DENGUE DISEASE MAPPING BASED ON 

DISCRETE TIME-SPACE STOCHASTIC SIR-SI MODELS FOR DISEASE 

TRANSMISSION WITH TRACT-COUNT DATA 

 

N. A. Samat
1
 and D. F. Percy

1
 

 
1
Salford Business School, University of Salford, Greater Manchester, M5 4WT,  

United Kingdom, N.A.SamotSamat@pgr.salford.ac.uk 

 

Relative risk estimation is one of the most important issues when studying geographical 

distributions of disease occurrence for disease mapping. Numerous studies of disease 

mapping use a regression-type model where observable (fixed effects) and unobservable 

(random effects) variables are included to give a clean map and hence depict the true excess 

risk. In spite of this, published studies that use structural disease transmission models for 

disease mapping are scarce.  

Specifically for the case of dengue fever, few researchers use stochastic processes to estimate 

the relative risk for disease mapping. Rather, most dengue studies are based on exploratory 

data analysis accompanied by pictorial maps, which includes the study of covariates and their 

effects on dengue disease distribution; see, for example, Gubler (1998) and Rosa-Freitas et al. 

(2003). Furthermore, some authors use a geographic information system (GIS) to integrate 

the patient-related information; see, for example, Tran et al. (2004). 

Consequently, our research introduces an alternative method to estimate the relative risk of 

dengue disease transmission based initially on discrete-time, discrete-space stochastic SIR-SI 

models (susceptible-infective-recovered for human populations; susceptible-infective for 

vector populations). This method is designed to overcome the drawbacks of relative risk 

estimation in disease mapping using the classical approach based on standardized morbidity 

ratios. It involves extending the fundamental Poisson-gamma model and developing a 

Bayesian analytic approach that has previously been applied to the basic SIR model. 

In particular, we develop the discrete time-space stochastic SIR-SI models shown below 

based on a compartmental model that has been used in the study of dengue disease 

transmission; see, for example, Esteva and Vargas (1998) and Nishiura (2006). This is an 

extension of the discrete-time stochastic SIR model proposed by Lawson (2006). In general, 

for Mi ,,2,1 K=  tracts and Tj ,,2,1 K=  time periods, the discrete time-space stochastic 

SIR-SI models for dengue disease transmission in human populations are as follows: 
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Similarly, the discrete time-space stochastic SIR-SI models for dengue disease transmission 

in vector (mosquito) populations are as follows: 
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The terms that appear in these equations are: 

 )(hS  number of susceptibles in the human population 

 )(hI   number of infectives in the human population 

 )(hR   number of recovered in the human population 

 )(vS  number of susceptibles in the mosquito population 

 )(vI  number of infectives in the mosquito population 

 )(hµ   per capita mortality rate of humans 

 )(vµ  per capita mortality rate of mosquitoes 

 γ  recovery rate of humans 

 b     biting rate (average number of bites per mosquito per day) 

 m  number of alternative hosts available as the blood source 

 A  constant recruitment rate for the vector 

 )(hβ     probability of transmission from the vector to the human 

 )(vβ     probability of transmission from the human to the vector 

 )(hN    human population size )()()( hhh RIS ++  

 )(

0

hβ     constant term for the human population 

 )(

0

vβ     constant term for the vector population 

  )(hc     spatial random effect for the human population 

  
)(vc     spatial random effect for the vector population 

 

We perform the calculations for our alternative method of relative risk estimation using 

WinBUGS software, which is ideal for implementing a Bayesian analysis of structural 

models such as our discrete time-space stochastic SIR-SI models for dengue disease 

transmission. In general, for Mi ,,2,1 K=  tracts and Tj ,,2,1 K=  time periods, a sample of 

observations from the posterior distribution of the mean number of infective humans )(h

ijλ can 

be written as )()(

2
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1 ,,, h
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h

ij

h

ij λλλ K . Therefore the posterior mean of the mean number of 

infective humans can be approximated using the unbiased sample mean 
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The relative risk parameter 
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ijkθ  can be written as 
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so it follows that the posterior mean of the relative risk may also be approximated using the 
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In other words, the posterior mean for the relative risk is equal to the posterior mean of the 

mean number of infective humans divided by the expected number of infective cases for 

human populations. To conclude this presentation, we demonstrate the estimation of relative 

risk based on these discrete time-space stochastic SIR-SI models for dengue disease 

transmission using dengue data in the form of counts of cases within the states of Malaysia. 
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Work related accidents are the most important healthy problem to Brazilian workers
1
. 

Beyond that, underreporting of almost 90% of cases
2
 seriously difficult diagnosis and 

knowledge of its causes. complicating public policies to their prevention. The use of spatial 

data in epidemiology investigation is not recent, but improvement of computers capacity and 

development of new statistical methods could open new horizon on epidemiological findings. 

This spatial case-control study
2
, includes data of 2,323 accidents and controls in a 300,000 

inhabitants city in Southeast of Brazil. Data were analyzed by degree of severity reported by 

workers. This were classified at a 1:10 scale and then stratified into 3 levels: light (1-4), 

moderate (5-7) and serious (8-10) accidents, plus level 4 for the controls. This classification 

was compared with physician´s one obtaining 0.17 of Pearson correlation coefficient. 

Using the definition of spatial risk from Bithell
3
, and an extended procedure proposed by 

Kelsall and Diggle
4
 to multinomial analysis, we estimated the work related accident spatial 

risk by  generalized additive model
5
 (GAM) for each of those 3 levels compared to controls, 

whith and without some non-spatial covariates that could be related to the outcome (age; sex; 

schooling; if the employee has formal contract; if the labor is regular; if is domestic and if is 

in streets). The multinomial model used was the polytomous logistic model
6
.  All 

programming was made in software R2.7 and the maps were built on ArcMap 9.2. 

Figure 1 shows results for the two models studied, one adjusted only with space as predictor 

and the other adjusted with space plus covariates. Table 1 shows the parametric analysis of 

the estimated GAM with covariates.  

 

Table 1: Estimated measures for  work related accident. Response: serious, moderate, light 

and control. N=2323. Piracicaba - SP - Brazil (2007). 

OR LL UL P-value OR LL UL P-value OR LL UL P-value

Age (Years) 0,980 0,970 0,990 0,000 0,962 0,946 0,978 0,000 0,977 0,968 0,987 0,000

Schooling (Years) 0,912 0,882 0,942 0,000 0,933 0,889 0,980 0,005 0,957 0,928 0,986 0,004

Sex (Male) 2,137 1,534 2,976 0,000 2,008 1,272 3,169 0,003 2,448 1,809 3,314 0,000

Street Work (Yes) 0,820 0,647 1,039 0,100 0,700 0,498 0,985 0,041 0,750 0,609 0,924 0,007

Regular Work (Yes) 1,712 1,096 2,673 0,018 1,517 0,891 2,582 0,125 1,535 1,082 2,176 0,016

Labor Rights (Yes) 0,899 0,577 1,401 0,638 1,851 1,062 3,226 0,030 1,498 1,047 2,144 0,027

Domestic Work (Yes) 0,678 0,427 1,077 0,100 0,666 0,353 1,255 0,209 0,651 0,423 1,003 0,052

OR: Odds Ratio; LL: OR Lower Limit; UL: OR Upper Limit. 

Severe vs Controls Moderate vs Controls Light vs Controls
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Figure 1: Spatial Risk of Work Related Accident . Piracicaba - SP - Brazil (2007). 

 

One can see that different risk levels occur in each area according to the severity of the 

accident, in this case defined by self report worker. Addition of covariates in the models 

shows areas where other factors of interest must be investigated, as there is a remained risk in 

some regions. The method is an important way to detect areas of any disease risk including 

covariates, under the efficiency of case-control design.  
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Asthma is a respiratory disease which carries a risk of hospitalisation in severe cases. 

Numerous studies have shown that air pollution is one of the factors that exacerbates asthma 

symptoms (Rumchev, et al, 2004) and while population increases in asthma hospitalisation 

have been shown for Perth, the nature of exposure and risk across areas within the 

metropolitan area have not been determined.  

 

The preliminary statistical analysis of the air pollutant concentration data and monthly asthma 

hospitalisation records showed that the change in the hospitalisation counts was synchronised 

with the change in NO2 and CO concentrations. This observation led to an assumption that 

the asthma hospitalisation risk could be estimated by a generalized linear model with the 

concentration of air pollutants as the explanatory variable. The measured air pollutant 

concentration did not provide sufficient data coverage across the Perth metropolitan area as 

only five monitoring stations measured the concentration of the pollutants of interest. Given 

the sparseness of hard data, it was not possible to use geostatistical interpolation as illustrated 

by Malherbe et al (2008). An alternative air pollutant concentration measure was required, 

which was provided by the combined application of a Gaussian Plume Model (Awasthi, 

Khare, & Gargava, 2006 and Builtjes, 2003) and Lognormal Kriging (LK) of emission 

inventory data (NO, CO and PM10) which were available for 2006. The NO emission data 

were used as the reference variable to NO2. Higher concentrations of CO and NO are 

observed in winter, a trend which was also observed in the monitored air pollutant data and 

past environmental studies (Codde et al., 2003; Hinwood et al., 2006; Rodriguez et al., 2007), 

while the PM10 concentration becomes higher in summer. 

 

The asthma hospitalisation risk was estimated from the monthly recordings of the asthma 

admission per postcode via a Bayesian hierarchical model. A variable risk model was adopted 

for the hospitalization risk. The variable risk modeling was performed in R statistical 

computing software using the Poisson-gamma exchangeable prior model . The results show 

that the asthma hospitalisation risk is higher in the outskirts of the central metropolitan area. 

 

The log transformed asthma risk was regressed against the air pollutant concentration, which 

returned the effect of air pollutant concentration change on asthma hospitalisation risk as a 

regression coefficient in exponential scale. The results of GLM analysis show that there is a 

statistically significant relationship between asthma hospitalisation risk and air pollutant 

concentration. The GLM coefficients suggest that an increase in NO and CO concentration 

                                                             162



 

results in an increase in estimated mean risk, while the PM10 concentration show opposite 

relationship. Although it is intrinsically unlikely that the increase in particulate concentration 

decreases the risk of hospitalisation, this outcome is deemed appropriate considering the 

seasonality of the modeled PM10 concentration and hospitalisation occurrence. The influence 

of air pollutants on the asthma hospitalisation risk is shown to vary over both time and space. 

Table 1 gives the estimation equation for the mean hospitalisation risk in 2006 for two 

postcodes.  

 

Table 1: Predictive equations for 2006 asthma risk: postcodes-6000 and 6010 

Year - 

2006 

Postcode - 6000 Postcode - 6010 

CO ( )COX33247.02692.6exp +−=θ  ( )COX03903.09491.6exp +−=θ  

NO ( )NOX2017.0038.6exp +−=θ  ( )NOX1833.0234.8exp −−=θ  

PM10 ( )101393.0977.5exp PMX−−=θ  ( )101541.0449.6exp PMX−−=θ  

where θ  COX , NOX  and 10PMX  denote the estimated mean risk and the concentration of CO 

(g/month), NO (g/month) and PM10 (µg/month) respectively.  

 

A comparison of the yearly GLM output suggests that the asthma hospitalisation risk has 

decreased over the study period, although few acute rises in the risk were observed in some 

years. Overall a decrease in the risk over the period of 2000 to 2007 can be seen from the 

GLM outputs, the NO model output follows the similar distribution and temporal variation to 

the CO model output, while PM10 was deemed as having no effect on the asthma 

hospitalization risk. 
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The study of the homicides in a city is very important, because with the knowledge of the 

phenomenon and its behaviour, is possible to identify violence focus and to implement 

security plans and vigilance, with the objective of the habitants have better life conditions and 

coexistence.  

The high rates of homicides registered daily at Cali, Colombia are a cause of concern for 

authorities and institutes in charge of the citizen security and social coexistence (CISALVA, 

2005, 2006, 2007). Authors as Kaplan et al, 1996 have identified the relation among poverty, 

social inequality and violent crime, when they compared the homicides rates among countries 

or among geographical areas of the same country. They suggested to analyse the spatial 

variability of the homicides rates in a territory to explain its possible variations.  

Data of this study belong to the period January 2004 to December 2008 and have been 

collected by a Vigilance Committee in charge to analyse the deaths for external causes in 

Cali, Colombia. Database contain information about homicide in 292 neighborhoods, and 49 

variables belonging to 1) Personal information of the victim 2) Place of the homicide 3) 

Information of the attacker 4) Time variables 4) Context of the homicide and type of weapon.  

Rates were fitted by Bayesian method (Marshall 1991). This method does a weighted having 

into account the number of habitants in a neighborhood, giving higher weight to the average 

rate calculated for the city in the case when a neighborhood has small number of habitants.  

Two methodologies are used to analyse homicide data: 1) Geostatistics (Matheron, 1962), 

with the objective to analyse the possible spatial correlation of the homicides through the 

time, the possible direction of the phenomenon and the clustering of the homicides in the city 

through risk maps, 2) Multivariate Data Analysis with the Principal Components Analysis 

(PCA) (Hotelling, 1933) and Cluster Analysis , to characterise the homicides by towns, by 

using variables as type of weapon, Place of the homicide, Context of the homicide, etcetera.  

The spatial statistics is a set of techniques suitable for the data analysis of random variables, 

measured in several sites (points of the space or spatial aggregations) of a region. In a formal 

way, spatial statistics works with realisations of the random process (random field) , where S, 

is the location in the Euclian space d – dimensional and is a random variable in the location S 

(Chilès and Delfiner, 1999).  
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PCA as a reduction technique and data representation is applied to data tables where the 

columns are quantitative variables, and the rows are the subjects. This is a mathematical 

methodology where is no necessary to assume a probabilistic distribution. PCA transforms 

the original set of variables in a smaller set of variables, which are linear combinations of the 

original variables and they contain the highest variability.  

Figure 1(a) shows the empirical variogram of homicides rates for the year 2004. This 

variogram shows a good fit to the exponential model (blue line). Figure 1(b) shows an 

anisotropic behaviour in the direction 90° (green line). This direction belongs to the 

neighborhoods from the east of Cali. These neighborhoods belong “Distrito de Aguablanca” 

are identified as vulnerable zones, with high levels of poverty.  

 
Figure 1: (a) Empirical and Theoretical Variograms (b) Directional Variograms 

 

Maps were obtained using by the kriging results of the exponential model fitted. Figure 2 shows 

that the neighborhoods with the highest risk of homicides belong to central and eastern part of the 

Cali city. This behaviour is seen in 2004 and in the rest of years analysed 

 

 

Figure 2: Risk Map of Homicides, Estimated by Kriging, for year 2004 
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Figure 3(b) shows that the variables are located at left size of the first factorial axis; the white 

weapon and the masculine gender have the highest contribution in the conformation of the first 

factorial axis. In addition, homicides of the masculine gender are associated with the use of the 

white weapon and the unemployment. Figure 3(a) indicates that the towns 13, 14 and 15 are away 

of the first factorial axis, in the sense that the number of homicides increase. Furthermore, these 

towns seem clustered as of high risk of homicide; On the contrary, towns 1, 5 and 22 seem 

clustered as of low risk of homicide. 

 
Figure 3: (a) Subject graphic (b) Variable graphic 
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In digital soil mapping and erosion numerical modeling, the primary elevation data have to be 

processed and topographic analysis carried out before we can use it for the particular 

application. We are interested in optimizing an interpolation method used for contour lines 

data which models a terrain. 

The regularized spline with tension (RST), constructed by Mitáš & Mitášová (1993), proved 

to be one of the most appropriate for digital modeling and particularly for sediment-flow 

applications (e.g. Hofierka et al.  2007 or Cebecauer et al. 2002). The RST function S(x) is 

based on the condition of minimizing the deviation from the measured points and its 

smoothness seminorn. S(x) is computed as: [ ]∑
=

+=
N

j

j

j xxRaxS
1

),()( λ ,    where [ ]),( jxxR  is 

radial basis function with an explicit form depending on interpolation parameters of the 

method. The coefficients a and λj are obtained by solving the system of linear equations 

corresponding to the input points. The interpolation parameters are: (i) tension  which tunes 

the character of the resulting surface from thin plate to membrane, (ii) smoothing parameter, 

smooth, which controls the deviation between the given points and the resulting surface. 

Smooth  plays an important role when the data contains measurement error. Otherwise, a 

small value is recommended to avoid overshoots. (iii) sampling step: Since the method 

requires points as its input, the contours have to be sampled first.  

In our study area, which is  a steep slope with an evidence of intensive soil erosion with area 

of about 25 hectars in Czechia, we use the above described RST method to create a reference 

DEM based on scatter data points measured by laser theodolite. Due to a high accuracy of the 

measurements, we have chosen a very low smoothing parameter (0.001), just to avoid 

overshoots. A wide range of tension parameters have been tested, while the one that 

generated minimal standard error of the cross-validation have been chosen (30). Terrain 

characteristics, important for erosion modeling (such as slope, aspect and curvatures) are 

computed simultaneously with the interpolation. Hence, it is not necessary to compute them 

numerically from the DEM during which the spatial resolution plays the important role. We 

consider the resolution of the grid of 1 meter as a good compromise that assures the necessary 

precision by comparing the surface models and the acceptable computational cost. 

The contour lines were provided by the national Geodetic and Cadastral Office. It concerns 

the vectorized contours from basic topographic maps at a scale of  1: 10 000 with the contour 

interval of 5 m, ranging from 375 to 465 m. Kučera (1961) empirically derived the standard 
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error of the contour altitude information: εtgmv 2,488,0 2 +=  , where ε denotes the slope 

steepness. 

The deviations of the reference DEM and contours were biased. Therefore, we had to 

increment the reference DEM by 2,76 m to obtain the calibrated reference DEM (REF). In 

order to optimize the interpolation parameters for contours, we look for the three 

interpolation parameters (sampling step, tension and smooth) which generate a surface (M1) 

whose standard deviation of the differences from REF (s M1-REF) is the lowest. For a dense net 

of the three parameters, we have repeatedly created DEMs and computed the s M1-REF. We 

have found the minimum s M1-REF = 1,18 m for sampling step = 20, tension = 18, smooth = 

0,4 whereas it was possible to optimize the interpolation parameters of tension and smooth 

for large interval of the sampling steps (in our study it was approximately 10 – 60 meters). 

The value of s M1-REF  is comparable to the standard deviation of the vertical difference 

between contour points and the reference model s CON-REF  = 1,3 m.  We have found that the 

minimizing function was only very slightly sensitive to the sampling step which could allow 

us to use a higher sampling step (e.g. 50 m) to spend the computational cost. The resulting 

surface M1 seems to be plausible to REF also regarding the topographic potential for erosion 

and deposition which is a derived characteristic of DEM described by Mitáš & Mitášová 

(1998).  

In common applications the reference DEM is not at our disposal and the cross-validation is 

used to solve the problem. Nevertheless, the use of the cross-validation to find the optimal 

triplet of the interpolation parameters (sampling step, tension and smooth) brings some 

problems. For short sampling steps the cross-validation ceases to indicate a goodness of the 

interpolation. The standard cross-validation deviation is very low also for unrealistic results. 

It is due to the fact that the distances between points on the same contour are much smaller 

than the distance to the neighboring contours. Regarding the experience with the optimization 

using reference DEM, we could use reasonably large sampling step of 20 m. We obtained the 

optimal parameters (tension = 21, smooth = 0.01). Nevertheless, we observed unrealistic 

step-like features at the bottom of valley. We suppose that the problem is caused by the fact 

that the cross-validation procedure does not account for vertical error of input data. We 

obtained much better results after we enlarged the sampling step or increased the smoothing 

parameter which we demonstrate on the topographic potential for erosion and deposition, see 

Figure 1. 

We came to the conclusion that the sampling step does not play very important role when 

using a reference DEM. It was possible to obtain very similar “optimal” surfaces with s M1-REF 

close to minimum for sampling steps ranging approx. from 10 to 60 meters. The choice of the 

sampling step becomes important, if a reference model is not at our disposal. This is the case 

of common applications when often the cross-validation is performed to obtain the optimal 

interpolation. For a good cross-validation performance, we have to use larger sampling steps 

(over 20 m). The use of cross-validation is suitable for data without measurement error, 

however for our contour data we had to use larger sampling steps or smoothing parameter, 

than proposed by CV, to obtain more accurate results. Further, we are studying the 
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relationships between smooth and sampling step parameters in order to adjust their 

combination properly to the known measurement error of input points. 

 
 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 
Figure 1: Topographic potential for erosion and deposition on the optimized surfaces for the 

different sampling steps.  
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Abstract:  
The main objective of this study was to investigate whether Kriging is a useful tool to 

estimate the spatial distribution of ground pollutants in contaminated land. The second 

objective of this work was a more practical one. It consists on the identification of areas that 

should be subjected to remedial actions and also on deciding which contaminant needs to be 

considered when remediation processes are taken. To achieve the described objectives, a 

contaminated site has been studied and the following steps have been followed: The 

contamination concentration limits beyond which action needs to be taken to remediate the 

ground contamination, in which case it is important to determine the areas that should be 

subjected to the appropriate remediation measures. A presentation of a case study will follow. 

A brief site description is given. Next, a spatial analysis of the site has been carried out. It 

consists essentially of: Firstly a primary process of the data which means that histograms and 

an unprocessed representation of the pollutant’s distribution has been plotted for each 

contaminant. Secondly a graphic presentation of the pollution using Kriging interpolation 

technique is shown. Finally co clusions concerning Kriging applications are given. An 

assessment concerning Kriging is presented and a balance between the advantages and 

disadvantages of its use is discussed. 
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Ground contaminants, remediation, assessment, regionalised variables, semivariogramms, 

geostatistics interpolations techniques. 
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Abstract 
It has been suggested to use a “transfer factor” (TF) (more correctly, but less commonly 

called concentration ratio) for estimating indoor radon (Rn) concentrations from Rn 

concentrations in soil air. We investigate the spatial distribution of estimated transfer factors, 

for a particular region of Germany known for high Rn potential in some areas. The results 

are, that (1) there is a significant spatial pattern of the TF, with the TP negatively correlated 

to soil air concentration; and (2) that the local distributions of the TP are quite dispersed, with 

geometric standard deviations (GSD) up to 2, and hence problematic to predict locally.  

Data and estimation 
We use soil and indoor Rn concentrations from the N part of the Oberpfalz region of 

Germany, as described in Bossew (2010; this conference). Also the estimation procedure by 

OK on nscore transformed data is the same. Back-transform for E-type estimates and 

estimation of local distributions is done by simulation. For each grid node 2000 samples are 

taken from the local distributions in nscore- (labelled Y) space, known from theory to be 

(asymptotically) normally distributed, y ~ FY = N(y*(x), sY(x)), with y*(x) the OK estimate 

and sY(x) the kriging SD at location x, in Y-space. Each sample is back-transformed into the 

original (labelled Z) space by simple linear interpolation in the Z ↔ Y transform table, and 

statistics are built. In Z-space, the ratio indoor / soil is calculated and its statistics computed. 

At this stage Y(soil) and Y(indoor) were estimated independently, since so far we do not have 

the technical means for co-estimation; for the E[Y] and the TF, however, as a compromise, 

the Y(soil, indoor) were random-sampled from bivariate normal with correlation r²=0.638 as 

found in Bossew (ibd., fig. 1). 

Results 
The E-type estimates of Rn concentrations in soil and indoor are mapped in Figure 1. The 

spatial pattern known from the measurements is reproduced well, although extremes are 

underestimated. For examples, the highest measured concentration in soil air is above 1000 

kBq/m³, whereas the highest estimated grid node equals somewhat less than 400. This is due 

to the relatively high nugget of the variogram, which could however not be set lower, in view 

of the current data situation. Global distributions of the measurements and the estimates of 

soil Rn are shown in  

Figure 2, as well as local distributions of the estimates at two locations: One low- and one 

high-Rn point was chosen, (214000,192000) and (204000,232000), respectively. The spatial 

distributions of the means (E), medians (M) and GSDs of the transfer factors are shown in 
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Figure 3. Their global, and two local distributions (same points as for the concentrations) are 

given in Figure 4. 

Conclusions 
We observe the following: 

(1) The TF are spatially distinctly structured, and negatively correlated to the concentration 

in soil air. Reasons may be found in non-linear transfer from soil into indoor air, regionally 

different transport properties of subsoil, or regionally different building styles and living 

habits, which all influence indoor Rn, apart from geogenic Rn occurrence, as quantified by 

the concentration in soil air. 
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Figure 1: estimated soil and indoor Rn concentrations. Symbols: sampling locations. 

 

(2) The estimated local distributions of the TF are quite dispersed, with local GSDs up to 2 

(Median over all nodes 1.79; median of the coefficient of variation (CV): 66%). In a future, 

improved attempt, co-estimation of soil- and indoor concentrations in Y-space may reduce 

the variability. 
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Figure 2: cumulative frequency distributions F of concentrations in soil air; global: 

estimates E(Z) over all grid nodes, empirical data (measurements); and local distributions at 

one point with low, and one point with high mean concentration.  
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Figure 3: geographical distribution of estimated mean (E), median (M), and geometric 

standard deviation (GSD) of the soil – indoor transfer factor. Units of E and M: 

(Bq/m³)/(kBq/m³). 
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Figure 4: cumulative frequency distributions F of soil – indoor transfer factors TF; global: 
estimates E(TF) over all grid nodes; and local distributions at one point with low, and one 

point with high mean TF. 

 

The higher GSDs at the edge of the investigated region are due to the higher estimation 

uncertainty of soil and indoor Rn, as kriging SD in Y-space, which basically reflects the 

geometry of sampling design (sparser towards the edges). 

In particular factor (1) renders the usefulness of the concept of a TF somewhat questionable. 

A way out – not trivial, however – may be “factorizing out” influences on Rn transport other 

than the geogenic potential. 
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Health Madrid is the municipal health administration of the City Council of Madrid and 

environmental health is a very important subject in the Health Madrid organization. 

Nowadays, for Health Madrid there are many reasons to consider vector-pest risk 

management as an essential item on public health, some examples are:  

• The emergence and reemergence of vector-borne parasitic and infectious diseases.  

• The global warming and its potential effect on vector populations (specially in south 

European countries due to climate and biogeographical proximity of vector hotspot 

areas).  

• The globalization of trade and the migratory movements as a driving force to transport 

vectors and pathogens.  

• The complex relationship between urban and periurban zones (the role of wild 

animals on urban pest prevention/control operations).  

• The alarming reduction on biocide (insecticide and rodenticide) availability.  

• The increasing news about vector resistance to biocides.  

• The peoples rejection to the use of biocides because of the associated health risks and 

environmental pollution.  

In this context, the professional that work on pest control need to identified, evaluate and 

manage the entire environmental factors that interact and determine a pest problem. As 

Integrated Pest Management (IPM) strategies (see Brenner BL et al., 2003) seek and in order 

to accomplish this it is fundamental to identify and acquire the biological, social, economical 

and environmental data that determine the different pest situations. Understanding the 

environmental determinants of vector-borne disease transmission is critical to the 

development of an IPM plan (Glass et al., 2002). Furthermore, it is necessary to fore fill the 

scientific approach that will allow us to apply effective and environmental friendly solutions.  

Geographical Information Systems (GIS) are tools that permit a technical and scientific based 

collection, processing and management (understanding) of data (Bosque Sendra J, 1997). For 

example, global positioning systems (GPS) and GIS are now essential vector-control tools 

used to control mosquitoes (WHO Public Health Significance of Urban Pests, 2008). In 

Health Madrid, GIS are not only a complex software solution for health problems, but a 

corporative strategy for the global processing of information.  

The pest control sector, as almost all sectors, has always used maps. The inclusion of GIS 

technology incorporates a new perspective, allowing spatial data to perform a much more 
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important role due to the quickness in for filling complex geographical analysis or processes. 

This is a great opportunity for Health Madrid’s Vector Control Unit to achieve a GIS-based 

programs (methodologies) for the prediction, prevention and control of cockroaches, rats, 

pigeons and other pests in Madrid city (García Howlett M and Cámara Vicario JM, 2009). 

Vector Control Unit already uses this technology in the following fields:  
• Monitoring citizens complains-incidents.  

• Monitoring pest populations.  

• Pest control programs evaluations.  

• Health surveillance.  

• Spatial analysis and factors correlation. And continues exploring new research and 

development GIS opportunities, such as:  

• Environmental risk assessment maps.  

• Spatial epidemiology.  

• Multivariant factor analysis.  

The most complex and alluring task is the prediction of spatial pest population behaviour, 

geoestadistics are fundamental in succeeding in this objective. Analytical tools, such as 

spatial filtering (Kitron U et al., 1996; Thomson MC et al., 1999) discriminant analysis and 

temporal Fourier-series representation of satellite data (Hay SI et al., 1998; Rogers D et al., 

1996) have been successfully applied to risk mapping of trypanosomiasis and malaria. 

Variograms, correlograms and fractals allow for consideration of heterogeneity over a range 

of spatial scales (Cullinan VI and Thomas JM, 1992). These and other spatial statistics and 

analytical tools have many applications for other vector-borne disease, where the interactions 

between environmental determinants, transmission patterns and disease risk may be more 

complex (Kitron U, 2000)  

Before using any classical statistics or geostatistics support data is necessary. Vector Control 

Unit has recollected data for more than ten years, mostly citizens complains but also pest 

monitoring studies and census. All monitoring and census have been based on scientific 

methodology, therefore can be examined and confidence limits are known.  

Urban heterogeneous environment and its geographical scale makes the prediction processes 

particularly difficult, as well as most urban pest ecological dynamics does. But the Vector 

Control Unit has began applying spatial analysis and geostatistics to pest population 

prediction, such as cockroaches (figure 1, after literature cited), rats and pigeons. Principally, 

prediction has been based on Kriging (see Webster R and Oliver MA, 2007). Thus they are 

simple geostatistical and spatial analysis approaches they already allow improvements in the 

Vector Control Units programs. This means better knowledge, efficiency and performance 

executing our role in local public health.  
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Figure 1: Map example of pest population prediction in eight neighbourhoods of Madrid 

city.  
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Abstract 
This work is devoted to developing numerical method for simulating flow and solute 

transport in porous media with multiphase taking tale of interaction solid/solute. In more 

precise, the problem studied is modeled by a coupled system consisting of an elliptical 

equation (for drainage), and an equation like convection-diffusion-reaction (for transfers). 

Numerical simulations were realistic for the two-dimensional problems confirm the stability 

and efficiency of the combined scheme, in the characterization of pollutant transport through 

the unsaturated zone of an industrial site. 

Introduction 
In the classical theory of drainage, the flow is assumed to be vertical in the unsaturated zone 

(USZ) and horizontal in the groundwater. This is the concept of the mixed layer. However, 

many authors (Vauclin et al, 1979, Clement et al 1996, Romano et al 1999, Kao et al, 2001; 

Silliman et al, 2002) emphasize the existence of a significant part of the infiltration horizontal 

elapsing in this zone. The importance of the unsaturated zone as an integral part of the 

hydrological cycle has long been recognized. The zone plays an inextricable role in many 

aspects of hydrology, including infiltration, soil moisture storage, evaporation, plant water 

uptake, groundwater recharge, runoff and erosion. Interest in the unsaturated zone has 

dramatically increased in recent years because of growing concern that the quality of the 

subsurface environment is being adversely affected by agricultural, industrial and municipal 

activities. In these areas the calculated and numerical simulation are essential because the 

experiments are very difficult if not impossible, by cons the predictions are vital. 

The application of the classical conforming finite element method to fluid flow in porous 

media, in general, does not locally conserve mass [14] due to its global continuity 

requirement. Many specialized methods have been developed to resolve these difficulties. 

Eulerian methods use fixed spatial grids and incorporate some form of upstream weighting or 

other dissipation techniques in their formulations, [05], [13] and the references therein). 

Hence, they can eliminate the nonphysical oscillations present in the standard finite 

difference and finite element methods. Some of the Eulerian methods, such as the Godunov 

scheme, the total variation diminishing (TVD) schemes, and the ENO/WENO schemes, can 

resolve shock discontinuities from the nonlinear hyperbolic conservation laws. Characteristic 

methods take advantage of the hyperbolic nature of the convection-diffusion equations by 

utilizing a characteristic tracking to treat the advective component of the governing equation 

[07].These methods symmetrize the governing equations and significantly reduce the 
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temporal truncation errors. Thus, they allow large time steps to be used in numerical 

simulations without loss of accuracy, and lead to a greatly improved efficiency. However, 

most characteristic methods have difficulties in treating flux boundary conditions when a 

characteristic is tracked to the boundary of the domain, and fail to conserve mass. More 

recently, FV methods were developed and analyzed for convection-diffusion problems (see, 

for instance, [01], [02], [04], [06], [08], [09], [10], [11], [12]). There are various approaches 

in deriving FV approximations of convection-diffusion equations. The most general 

classification is obtained depending on the choice of: (1) the finite volumes and (2) the 

discrete space to which the approximate solution belongs. The domain is meshed and 

depending on whether the finite volumes are the elements from the original splitting or 

volumes around the vertices of the original splitting, we have correspondingly cell-centered 

and vertex-centered finite volume methods. For the vertex-centered finite volumes, 

depending on whether the discrete space is piecewise constant over the finite volumes or 

piecewise linear over the original mesh, we have correspondingly vertex-centered finite 

volume difference methods or vertex- centered finite volume element methods. The cell-

centered finite volumes can lead to cell-centered finite volume difference methods or mixed 

methods. 

 In the first part of this work, we present a mathematical model that describes the flow and 

the solute transport through variably saturated porous media and multiphase, taking into 

account the interaction between the solid phase and liquid phase (effect of delay, degradation, 

and adsorption). The second part is devoted to analysis and numerical solution of the problem 

addressed in the first part, by using a combined diagram of mixed finite element and finite 

volume. The mixed finite element method is used for discretize the flow equation and the 

scheme of the finite volume is used to approximate the equation of convection-diffusion-

reaction. For this we have developed using the computer code FreeFem++[03] a calculation 

program allowing therefore to solve a coupled system consisting of an elliptical equation 

discretized by the finite element method mixed hybrid and a linear parabolic equation type 

convection-diffusion-reaction, discretized by finite volume method type "vertex centered" 

semi-implicit in time. Finally, in the last section a numerical simulations are performed to 

verify the one hand the validity of our calculation scheme, and secondly to test the 

computational efficiency and the prediction of our model on a real example (case of the 

factory paint the town of Souk AHRAS, ALGERIA). 
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The concepts of geostatistics are commonly difficult to understand for students, even for 

those with a strong mathematical background. Furthermore first time users of geostatistics 

often do not want to struggle through different books with the whole geostatistical 

background before using it. Too often this leads to using geostatistics as a black box. The 

data is imported in a software program, which calculates an experimental semivariogram, 

determines the ‘best’ semivariogram model and computes kriging estimates. These results are 

then considered as the only and best results, because they are based on geostatistics. This 

paper describes a number of generally accessible R-based (www.r-project.org) interactive 

modules, developed by the authors, which can be used in geostatistical courses but also by an 

individual user to easily learn the key concepts of geostatistics. These modules should allow 

the student or practitioner to see, in real time, the impact of deleting, moving or adding data 

points, changing parameters (e.g. lag distance, lag tolerance, directional tolerance for 

calculating an experimental semivariogram), using different semivariogram modeling 

techniques, using different kriging techniques, and so on. All the modules are made to work 

completely autonomous. This means that it is not required to have a dataset of your own. 

Those modules are therefore not meant to do a geostatistical study on a certain dataset (for 

this purpose there exists already a broad spectrum of good software packages). After learning 

the key concepts of geostatistics it should be easier for the user to do a good quality 

geostatistical study on their own dataset and to do a good interpretation of these results. The 

developing of these modules is based on experience with web-based tools for teaching 

statistical concepts, namely ‘Vestac’ and ‘env2exp’ (Darius et al. 2003; Darius et al. 2007) 

(see http://lstat.kuleuven.be/java/ and http://lstat.kuleuven.be/env2exp/). Those tools got 

several good critics (Cobb 2007; Wild 2007) and are already used in statistical courses all 

over the world.  

In this paper different modules are discussed. The first module allows interactive 

experimentation with the experimental semivariogram of easy 1D-functions (e.g. Figure 1). 

Here the user can learn to understand the experimental semivariogram, but also about the 

effect of the number of sampling points, the lag distance, and other parameters.  
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Figure 1 Part of the first module, which allows interactive experimentation with the 

experimental semivariogram of easy 1D-functions. In this figure the semivariogram of two 

linear datasets (F(x)=ax+b ) are compared. The user can also delete or change data points 

and see the effect on the semivariogram in real time. 

 

One of the other modules focuses on the effect of sampling on the semivariogram. The 

following questions are addressed in this module: Is it better to sample on a regular grid or 

randomly if nothing is known about the sampled parameter. And does this change if one has 

an idea about the spatial distribution of the sampled parameter? How does this sampling 

affect the experimental semivariogram that is deduced based on these data points?  

In the coming months other modules are to be developed. The covered themes are e.g. the 

effect of the semivariogram model and the kriging parameters (for example search radius) on 

the kriging estimates, and thus the decisions based on these estimates; and the effect of taking 

into account the difference between volume and point measurements and point and volume 

estimates.  

All modules will be shared on the internet. According to the freeware philosophy of R, all 

users will be able to adjust and develop the modules further.  

 

Cobb G (2007) One possible frame for thinking about experiential learning. International 

Statistical review 75(3): 336-347 
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Introduction 
Air quality is an important issue in many urbanised and industrialised cities all over the 

world. Monitoring of air quality is generally done by physico-chemical measurements of 

single atmospheric pollutants, thereby ignoring the combined effects pollutants might have on 

biological tissues. In addition, high costs associated with such measurements limit their 

spatial distribution, and thus the spatial resolution of the measured air quality. Biological 

monitoring procedures, however, enable low cost, high spatial resolution assessments of the 

combined effect of air quality, or habitat quality in general. The aims of this study were to 

evaluate the potential of anatomical and morphological leaf characteristics of Plantago 

lanceolata L. as bio-indicators of urban habitat quality and to assess their spatial distribution 

in an urban environment as a case study. 

 

Material and methods 
This study examined 169 sampling locations in the city of Ghent (Belgium), divided over 

four land use classes: green land (GL), urban green (UG), urban (U) and harbour and industry 

(HI). The spatial distribution of leaf characteristics of P. lanceolata L., including specific leaf 

area (SLA, cm2 g-1), abaxial (the lower leaf side) stomatal density (SD, number of stomata 

per mm2), stomatal pore surface (SPS, µm2) and stomatal resistance (Rs, s m-1), are 

investigated for evaluating urban habitat quality in the city of Gent. Details on the sampling 

are give in Kardel et al. (2010). 

Firstly, normality of the data was tested for all considered leaf characteristics using a 

Kolmogorov-Smirnov test. Sampling date, expressed as the day of the year, was considered 

as a possible factor which could affect the leaf characteristics. Therefore, the effect of 

sampling date was checked using a linear regression model between the leaf characteristics 

and the day of year. Then, differences in characteristics between the four land use classes 

were tested for significance by using a one-way analysis of variance (ANOVA) procedure 

and a Tukey-HSD test using R 2.6.2 software.  

The geostatistical analysis procedure ‘simple kriging with varying local means’ (SKLM) 

(Balasooriya et al., 2009) was used to map the spatial distribution of the leaf characteristics. 

For each characteristic, the mean values of the different land use classes were calculated. 

Subsequently, the residuals were calculated by taking the difference between each observed 
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value and the corresponding land use class mean. These residuals were used to compute the 

residual variograms required for the SKLM. The geostatistical analysis was carried out using 

the Geostatistics Software Library (GSLIB) software. 

 

Results and discussion 
SD, SPS and Rs were significantly different between all land use classes; the most extreme 

variations were observed between the two land use classes GL and HI. SD and Rs were 

increased by 34 and 8 % in the HI in comparison with the GL, respectively. SPS was 

decreased (by 36 %) in the HI in comparison with the GL.  

Table 1 summarises the variogram parameters range, sill, nugget and relative nugget effect of 

the modeled variograms. The maximum value of semivariance (γ) is known as the sill. The 

lag distance (h) where the variogram reaches the sill is known as the range: the observations 

located within the range are spatially correlated. The semivariance where h = 0 is known as 

the nugget, and is an estimate of the residual error or spatially uncorrelated noise. The 

relative nugget effect is the ratio between the nugget and the sill, and quantifies the strength 

of spatial structure. All variograms of the considered characteristics show a bounded structure 

with ranges of 646-3740 m. The small relative nugget effects (8–51 %) depicted by all 

characteristics indicated a strong spatial correlation inside their ranges. 

 
Table 1: Omnidirectional variogram model parameters of SLA, SD, SPS and Rs with 

indication of the used model, the range, sill, nugget and the relative nugget effect 

Variable Model Range(m

) 

Silla Nuggeta Rel. nugget effect (%) 

SLA (cm2 g-

1) 

Exponential 1243 1584 572 36 

SD (No. mm-

2) 

Exponential 1872 244 125 51 

SPS (µm2) Exponential 3740 90 27 30 

Rs (s m-1) Spherical 646 27 2 8 
       a The units are equal to the square of the variable units. 

 

Geostatistical analysis revealed that the spatial distribution of SD, SPS, and Rs varied 

considerably across the study area, indicating clear differences and contrasts between 

different city areas. More specifically, these maps allowed us to distinguish between less and 

more polluted places in the considered area. For example, the nature reserve in the vicinity of 

the city centre, the city centre itself, areas with a high traffic density, both railway stations 

and the harbour area could easily be distinguished (e.g., Fig.1). 
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Figure 1: Spatial distribution of SD (number of stomata per mm2) in the two contrasting land 

use classes ‘green land (GL)’ and ‘harbour and industry (HI)’ in the study area, obtained by 

kriging (SKLM) (adapted from Kardel et al., 2010) 

  

Conclusion 
Spatial analysis of anatomical and morphological leaf characteristics of the herb P. 

lanceolata showed that stomatal characteristics particularly are potentially good indicators for 

urban habitat quality. Reason is that stomata are the connection between the interior of the 

leaf (and the plant) and the atmosphere (Wuytack et al. in press). Our results indicate that bio-

monitoring with common herbs is a promising, cost effective tool for urban habitat and air 

quality assessment, and, therefore, is a valuable tool for urban policy makers.  
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Figure 1: Ordination of soil groups (according to WRB, 2007) based on Principal 

Components Analysis 

 
The obtained information about environmental conditions and factors and soil data has been 

processed spatially by using geographical information systems (GIS) software ESRI Arc Map 

9.2. A principal component analysis by PC ORD 5.31 software was carried out in order to 

investigate the relationships between the sampling plots and soil groups, geological deposits, 

topography and forest type (Fig. 1). A principal component analysis score plot indicated that 
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The spatial distribution of disease risk has always been a concern in Epidemiology. 

Particularly, in the last two decades, several techniques of spatial analysis for epidemiological 

data have been developed to estimate the variation of risk in space. 

However, several studies based on scales or multinomal response still use logistic regression 

models for data analysis without incorporating spatial effects. This is partially due to the 

reduced number of techniques and computational tools which allow treating adequately 

multinomial responses occurring in epidemiological data within the spatial setting. 

This work aims to contribute to overcoming this limitation. To do this, when the response of 

a case-control study is multinominal, the authors define the spatial risk and present how to 

obtain, analyse and map it, including acquaintance of the estimates statistical significance. 

The definition of spatial risk in multinomial analysis comes from Bithell (1990) that define 

the spatial risk functions for epidemiological studies with binomial responses.  

Kelsall and Diggle (1998) proposed a procedure to estimate the spatial risk by means of a 

generalized additive model (GAM) in case-control studies, which allows for the inclusion of 

other non-spatial covariates in the study that could be related to the outcome of interest, 

where the space is analised as a bidimensional non-parametric function. 

Here the authors, after defined the new spatial risk, presented an algorithm to estimate GAM 

when the response is multinomial and the non-parametric function, to study the space, is 

estimated as a bidimensional kernel. This development is based on article and book written 

by Kelsall and Diggle (1998) and Hastie and Tibshirani (1990), respectively. The 

multinomial model used was the polytomous logistic model (Ananth and Kleinbaum 1997). 

To obtain a significance analysis of the estimated spatial risk a simulation method was 

introduced. 

All programming was made in software R2.7 and the maps were built on ArcMap 9.2. 

Data from a population-based case-control study of occupational accidents in a Brazilian city 

(Stephan 2008) were adjusted with the response variable classified in three categories: serious 

cases, mild cases and controls. Along the spatial analysis, the informations about: age; sex; 

schooling; if the employee has formal contract; if, despite any formal contract, the worker has 

some rights; if the labor is domestic and if is in streets were included. 

Table 1 shows the parametric analysis of the estimated GAM. Table 2 gives a deviance 

analysis comparing the complete model with the models without space and without 

parametric covariates. Figure 1 shows the spatial risk estimated by GAM with covariates and 

Figure 2, without covariates. Both figures include significance analysis. 
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Table 1: Estimated measures for occupational accident. Response: serious, mild and control. 
N=2323. 

OR LL(OR) UL(OR) P-value OR LL(OR) UL(OR) P-value
Age (Years) 0.989 0.977 1.000 0.053 0.969 0.962 0.976 <0.001
Sex (Male) 2.481 1.682 3.660 <0.001 2.146 1.722 2.674 <0.001
Schooling (Years) 0.953 0.917 0.990 0.013 0.929 0.909 0.949 <0.001
Formal Contract (Yes) 2.674 1.489 4.800 0.001 1.314 1.038 1.663 0.023
Labor Rights (Yes) 0.546 0.304 0.979 0.042 1.779 1.392 2.275 <0.001
Domestic Work (Yes) 0.458 0.237 0.887 0.021 0.787 0.587 1.057 0.111
Street Work (Yes) 0.868 0.667 1.128 0.289 0.765 0.657 0.892 0.001
OR: Odds Ratio; LL: Lower Limit; UL: Upper Limit.
Source: Stephan (2008).

Serious vs Controls Mild vs Controls

 
 

Table 2: Deviance Analysis of the adjusted models. Response: serious, mild and control. 
N=2323. 

Res. DF Res. Deviance DF Deviance P(>|Chi|)
Semiparametric Model (complete model) 4628 3621.361 - - -
Parametric Model (without space) 4630 3685.968 2 64.607 <0.0001
Non-Parametric Model (without covariates) 4642 3828.129 14 206.768 <0.0001
DF: Degrees of Freedom; Res.:Residual.
Source: Stephan (2008).  
 

 
Figure 1: Spatial Risk of Occupational Accident adjusted with covariates. Piracicaba - SP - 

Brazil (2007). 
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Figure 2: Spatial Risk of Occupational Accident adjusted without covariates. Piracicaba - 

SP - Brazil (2007). 

 

In the example, the analysis has found areas of significant increased relative risk and 

protection for occupational accidents that varied depending on the level of comparison. Some 

areas had twice the risk compared to the average of the region studied when considering 

serious accident, meanwhile the mild cases had lesser. In parametric variables studied, 

different risk and protection factors were found for the two levels of the cases. The deviance 

analysis indicates the global model as the best.  

This work brings the complete way to analyze data from case-control studies with 

multinomial response where the spatial risk has to be analyzed. As a bonus, gives the 

opportunity to include other covariates in the spatial analysis, controlling all study 

informations in one global model. 
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Introduction 

Only recently soil contamination has been acknowledged to be a form of collateral damage of 

the First World War (WWI). Van Meirvenne et al. (2008) showed an enrichment of copper 

content by 6 mg kg
-1
 in the soil around Ypres (Belgium) to be a legacy of shelling during 

WWI. However, their conclusion was based on a regional data base of the entire province of 

West-Flanders (3144 km
2
) containing a limited number of soil samples in the war zone 

(640 km
2
). Furthermore, the chemical composition of the WWI artillery consisted not only of 

Cu. Also Zn was used in the top fuse of a shell, shrapnel balls and bullets were made out of 

Pb and As was used in toxic gas.  

Even though no risk for human health was found, the Flemish government became conscious 

of the possible effects of WWI on the geochemical soil composition. As such, they provided 

the means to take 300 additional soil samples in order to (1) increase the detail of the 

inventory and to (2) expand the data base to include eight heavy metals As, Cd, Cr, Cu, Hg, 

Ni, Pb and Zn. To constrain the logistic costs we opted for a two-phase sampling strategy 

with each phase consisting of 100 samples. The other third was foreseen to be used as an 

independent validation dataset. This paper discusses the two-phase sampling strategy and 

shows the main estimation maps created with the enlarged dataset. 
 

Study site 

The study area of 640 km² corresponds to the former WWI war zone along the Western front, 

which extended from the Belgian coast to the Swiss border (Figure 1). The front line curved 

along the east of Ypres, which was the centre of intense and sustained warfare between the 

German and the Allied forces. The soil in the war zone consists of Pleistocene (Weichsilian) 

wind-blown sediments deposited over Tertiary marine clayey sediments (Ypresian). The 

topsoil texture is mainly sandy silt in the north and centre of the area and changes gradually 

to silt in the south. In the utmost south and north, clayey soils occur. At present, most of the 

area is used for agriculture.  
 

Data collection 

Initially, samples were available at 253 locations. Most of them were provided by the Public 
Flemish Waste Agency (OVAM), which systematically records data from soil investigation 

studies. The procedure to determine the heavy metal concentrations involved a microwave 

destruction of the air-dry fine-earth fraction using HCl, HNO3 and HF. In the digest, the 

metals were analyzed using ICP-AES, in conformity with the Flemish soil legislation. 
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Figure 1: Map of the Western front (Flanders Fields Documentation Centre Ypres) with indication of 

the study area (left) and the available dataset with 629 prediction data and 102 validation data 

(right).  

 

We performed a two-phase sampling strategy aiming to increase the level of detail inside the 

study area rather than to delineate a contaminated area in respect to a critical threshold. 

Because the initial dataset was clustered, sampling in less densely sampled regions was the 

first objective. Therefore, selection criteria based on distance measures and the ordinary 

kriging variance were used. After filling the spatial gaps, we focused on the local uncertainty 

in the second sampling stage. Therefore, we used both the conditional variance and the 

conditional coefficient of variation as complementary selection criteria. A clear improvement 

of four validation indices demonstrated the benefits of our data collection. Finally, after a 

screening of the OVAM data base for the most recent measurements, we ended up with 731 

data points (Figure 1). 

Summary statistics revealed that Cu, Pb and Zn are the dominant heavy metals in the soil 

around Ypres. Because their mean is higher than the legal background value, we can 

conclude that there is a regional enrichment for Cu, Pb and Zn, whereas there is no indication 

of a regional enrichment for As. On average the soil is not contaminated since for each heavy 

metal, the median is below or equal to the background value. Nevertheless, at a local scale 

concentrations above the sanitation threshold were detected. 

 

Final maps 

To yield the prediction maps, all available data were used, including validation data. Because 

of the large amount of censored data for As, Cd and Hg, indicator kriging was applied with 

the detection limit as the first threshold. The other data sets were interpolated using 

sequential Gaussian simulation. Before, the independent validation had revealed that the E-

type was the best estimation for Cr and Ni and the M-type the best for Cu, Pb and Zn, which 

can be explained by the strong positive skewness of the latter data distributions.  
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Whereas the prediction maps for Cr and Ni show a link between increased concentrations and 

the occurrence of clay soils, patterns of increased Cu and Pb estimations were not related to 

soil texture (Figure 2). Apart from some isolated patches with elevated concentrations, a 

continuous band appeared around the WWI front line. 
 

a)  b)  c)  

d)  e)  f)  

Figure 2: Prediction maps for the topsoil a) Cu, b) Pb, c) Zn, d) Cr, e) Ni content with indication of 

the centre of Ypres and the frontline which remained more or less stable between 1915 and 1917 and f) 

texture map of the study area modified from the digital soil map of Flanders.  

 

The largest zone with increased Cu and Pb concentrations was situated in a prominent part of 

the Ypres Salient, where intensive battles took place. For Zn 90% of the estimations were 

below or equal to the background value. This might be due to the higher content of Cu 

compared to Zn in brass and the higher mobility of Zn in soil. We considered the differences 

in spatial structure of the heavy metals as an indication of the uniqueness of the source of Cu, 

Pb and, to a lesser degree, of Zn. 

 

Conclusion           

Even though the soil around Ypres is in general not contaminated according to critical legal 

thresholds of heavy metals, it was clearly shown that WWI affected the concentrations and 

spatial occurrence of Cu and especially Pb. Differences in parent material, metallurgical 

industry, amendments by slurry and sewage sludge as possible heavy metal sources were 

considered and excluded by Van Meirvenne et al. (2008). Consequently, we identified WWI 

activities as being responsible for the occurrence of elevated concentrations of Cu, Pb and Zn.           
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Climatic variables, such as temperature, are important controls on surface energy balance and 

ecosystem processes, and they are also inputs to ecological models that yield estimates over 

large spatial domains. However, meteorological networks provide point data observations, 

which are irregular and scarce, so this information must be extended to the entire study area 

through a process of spatial interpolation. The results from different interpolators depend on 

the sampling density (Dirks et al. 1998); when this is low, Geostatistics is more convenient 

than deterministic procedures. Kriging methods have shown considerable advantages 

compared to deterministic interpolations in rainfall (Goovaerts 2000) and temperature (Jarvis 

and Stuart 2001) estimation. 

The aim of this study was to create continuous surfaces from point monthly mean 

temperature observations in Galicia (NW Spain). Thus, a characterization of the spatial 

variability of temperature was carried out. Then monthly mean temperature was mapped by 

inverse distance weighting (IDW) and three different kriging techniques: ordinary kriging 

(OK), simple kriging (SK) and kriging with external drift (KED) using altitude as secondary 

information. 

Galicia is the most northwestern region of Spain, with 29570 km2, approximately. The region 

has a climate with local characteristics, due to maritime environment and rough relief. A 

decrease in temperature of 0.65 ºC each 100 m in height was estimated. The experimental 

dataset used in this exercise includes one year (2009) of mean monthly air temperature over 

141 stations. These stations cover the region almost homogeneously. The mean density of 

meteorological stations is low, one for every 210 km2 (14.5 km x 14.5 km). The range of 

distances between the stations extends from 5 to 280 km, approximately. 

The main statistical moments were analyzed. Shapiro-Wilk’s test was used to check 

normality on the datasets. Pearson’s r coefficient was used to determine the correlation 

between temperature and altitude in order to justify the use of KED (Webster and Oliver 

2001). IDW was used as a reference to map mean monthly temperature. Spatial variability 

was evaluated through semivariogram calculation, model fitting and comparison of each 

dataset. Model performance was checked using cross-validation (Webster and Oliver 2001). 

Only omnidirectional semivariograms were calculated due to the limited number of available 

data. Geostatistical interpolation was performed through OK, SK and KED. Theoretical 

background and mathematical formulation can be found in Webster and Oliver (2001). KED 

incorporates secondary information related to the primary variable; in this exercise, derived 

from a digital elevation model. Geostatistical analyses were performed using gstat (Pebesma 

2004). 

                                                             198



 

Mean monthly air temperature during the study period varied from 6.5 ºC in January to 18.7 

ºC in August. Shapiro-Wilk’s test showed that temperature datasets followed a normal 

distribution only in a few months however, no data transformation was performed. 

Correlation between altitude and mean monthly temperature ranged from –0.5 to –0.97, 

significant at the 1% level in all cases, justifying the use of KED. 

Two different theoretical functions (exponential and spherical) with variable nugget effects, 

depending on the month, were fitted to the experimental semivariograms. Spatial dependence 

was observed in the 12 months analyzed. Spherical models were fitted to 6 months and 

exponential models to the other 6 months. Figure 1 presents the models fitted to April and 

November 2009 as examples. Hence, monthly mean temperature in Galicia is not temporarily 

stationary, namely its spatial structure may vary from one month to another. The nugget 

effects varied between 12.5 and 72.3% of the sill value. Ranges were less than 15 km once, 

between 15 and 30 km in 3 months and greater than 30 km 8 times. Cross-validation results 

showed that the theoretical structures adequately described the spatial dependence of monthly 

mean temperature. 

 

 

Figure 1. Experimental semivariograms and their fitted models for monthly mean 

temperature of April (left) and November (right) 2009. 

 

In general, OK and SK maps were very similar due to the characteristics of both interpolators 

and gave mean monthly temperature distribution patterns similar to those obtained by IDW. 

However, the maximum and minimum values were slightly underestimated. Kriging errors 

were high in most of the study area except in areas near to the meteorological stations due to 

the low semivariogram ranges (Figure 2). 

KED tended to overestimate maximum values. Usually, KED errors showed lower values 

than those from OK. KED estimates reflected the variability of the secondary attribute 

however this is not proof that these trends pertain to monthly mean temperature (Figure 2). 
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Figure 2. Estimation and error maps of monthly mean temperature for April 2009 generated 

by OK and KED. 

 

The results from the different geostatistical procedures were very similar thus, no great 

improvements were obtained by incorporating altitude as secondary information through 

KED. Extending the study to longer datasets and shorter time scales may lead to different 

conclusions due to trends which are masked at the monthly level. 

 

References 
Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution studies of rainfall on Norfolk 

Island part II: interpolation of rainfall data. J Hydrol 208: 187-193. 

Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial 

interpolation of rainfall. J Hydrol 228: 113-129. doi: 10.1016/S0022-1694(00)00144-X 

Jarvis EH, Stuart N (2001) A comparison among strategies for interpolating maximum and 

minimum daily air temperatures. J Appl Meteorol 40: 1075-1084 

Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Computers & 

Geosciences 30: 683-691. doi: 10.1016/j.cageo.2004.03.012 

Webster R, Oliver MA (2001) Geostatistics for environmental scientists. John Wiley and 

Sons, Chichester, England, p. 149. 

 

 

 

 

 

 

 

 

                                                             200



 

SPATIAL VARIABILITY OF PH, REDOX POTENTIAL AND EXTRACTABLE Fe, 
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Soil spatial variability is a natural occurring and/or management induced feature that is 

important for site-specific management practices such as variable rate fertilization. Since rice 

paddy fields are flooded and flat, apparently they should be homogeneous and, therefore, it 

had been hypothesized that spatial variability in yields and soils might be negligible. 

However, significant levels of variability in soil general properties, soil nutrients and rice 

yields have been observed, and this even in small paddy fields. Moreover, soil properties (pH, 

organic mater content, available P and K) have been found to be spatially structured on paddy 

soils both under anaerobic and aerobic land uses (Sun et al., 2003). 

This study compares the effect of lime additions on the spatial variability of pH, redox 

potential (Eh) and available Fe, Mn and Zn from an acid rice soil, during three different 

growth stages. The objectives of this research were to assess the effect of lime amendment on 

the studied soil properties and to assess its patterns of spatial variability during the successive 

sampling periods. 

The study site was a paddy field cropped with rice (Oryza sativa L.) of 5.1 ha in area, situated 

in Corrientes province, Argentina According to the U.S. Soil Taxonomy, the soil is a Typic 

Plintacualf. A control with no lime addition and two dolomite doses in amount of 625 and 

1250 kg.ha-1 were tested. Soil samples were taken at three different times during the 

vegetative period (seedling, tillering, i. e. bunch formation and flowering) of the rice crop. A 

systematic sampling scheme was used. In each of the three treatments and the three sampling 

dates, ninety-six soil samples were taken on a 20 x 11.9 m grid covering the 5.1-ha site. The 

used sampling scheme was intended to provide sufficient numbers of data pairs over a wide 

range of distances, thus allowing identification of short- and long- range variations. 

Determinations were made in all samples for pH and Eh. Samples also were analyzed for 

extractable Fe, Mn and Zn (Abreu et al., 2007). 

Exploratory statistical analysis included examination of mean values, coefficients of 

variation, maximum and minimum values. Proximity to the normal distribution was judged 

on the basis of Kolmogorov-Smirnov test. Spatial variability was assessed by means of 

semivariogram analysis. The kriging approximation was used for interpolation and mapping 

purposes. As expected, soil pH increased, whereas soil Eh decreased as a function of time 

after flooding. Very high increases of extractable mean Fe contents and high increases of Mn 

contents were also recorded after flooding due to liberation of these elements as a 
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consequence of reduction processes induced by anaerobic conditions. For example, Fe 

content was about two times higher during the second sampling date and about four times 

higher during the third sampling date when compared with the initial content in aerobic 

conditions. Mean extractable Zn contents significantly decreased (P<0.05) after flooding 

indicating fixation of this element. Fe, Mn and Zn contents in general increased with 

increasing dolomite dose, mainly in anaerobic conditions. Therefore, there was an effect of 

lime amendment on extractable Fe, Mn and Zn concentrations. 

 

Table 1. Best fitted model parameters and determination coefficients during validation for 

extractable Fe, Mn and Zn at three sampling dates, and on three lime treatments. 
Treatment Code Model C0 C1 a (m) r2 C0/(C0+C1) 

First sampling 

control Fe-10 Spherical 0.0 268.1 41.3 0.917 0.0 

control Mn-10 Spherical 6.2 52.3 47.3 0.878 10.5 

control Zn-10 Spherical 0.023 0.059 57.9 0.784 28.0 

625 kg ha-1 Fe-11 Exponential 0.0 271.5 64.4 0.918 0.0 

625 kg ha-1 Mn-11 Spherical 19.56 93.5 56.4 0.892 17.3 

625 kg ha-1 Zn-11 Spherical 0.017 0.046 57.9 0.885 3.5 

1250 kg ha- Fe-12 Exponential 62.5 227.3 48.0 0.926 21.6 

1250 kg ha-1 Mn-12 Spherical 9.28 113.7 68.3 0.888 7.5 

1250 kg ha-1 Zn-12 Spherical 0.00072 0.050 59.1 0.903 12.5 

Second sampling 

control Fe-20 Exponential 0.0 3868.3 47.6 0.892 0.0 

control Mn-20 Exponential 0.0 465.1 58.3 0.918 0.0 

control Zn-20 Spherical 0.011 0.051 79.9 0.849 17.2 

625 kg ha-1 Fe-21 Spherical 1511.4 9139.6 54.0 0.894 14.2 

625 kg ha-1 Mn-21 Spherical 24.7 277.7 65.4 0.961 8.2 

625 kg ha-1 Zn-21 Spherical 0.007 0.049 73.6 0.936 13.0 

1250 kg ha- Fe-22 Spherical 94.5 10954.1 44.6 0.952 0.9 

1250 kg ha-1 Mn-22 Spherical 119.9 512.4 44.0 0.914 19.0 

1250 kg ha-1 Zn-22 Spherical 0.013 0.039 66.5 0.916 24.8 

Third sampling 

control Fe-30 Exponential 1378.2 4150.3 63.1 0.968 24.9 

control Mn-30 Spherical 82.3 1245.1 45.6 0.932 6.2 

control Zn-30 Spherical 0.012 0.044 82.5 0.937 20.9 

625 kg ha-1 Fe-31 Exponential 0.0 13967.9 62.8 0.892 0.0 

625 kg ha-1 Mn-31 Spherical 100.6 220.5 73.6 0.934 31.3 

625 kg ha-1 Zn-31 Spherical 0.001 0.023 70.8 0.953 4.9 

1250 kg ha- Fe-32 Spherical 20701.1 100817.3 55.7 0.930 17.0 

1250 kg ha-1 Mn-32 Spherical 0.0 861.7 73.4 0.974 0.0 

1250 kg ha-1 Zn-32 Spherical 0.005 0.020 52.4 0.908 19.5 

(C0 = nugget effect; C1 = sill; a = range; r2 = correlation coefficient). 

 

Spatial variability of Fe, Mn and Zn on the study rice field was far from negligible both on 

aerobic and on anaerobic conditions. In general, semivariograms for pH, Eh, Fe, Mn and Zn 

could be adjusted quite well, over the spatial scale of interest. A stable sill was reached in all 

the 45 data sets (five variables x three treatments x three sampling dates).Experimental 
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semivariograms were best fitted by spherical or exponential models. The nugget variances 

were all below 31.3 % of the sill value (Table 1). 

Kriging contour maps that were drawn using the fitted semivariogram models show discrete 

patches or small zones with distinct pH, Eh, Fe, Mn or Zn values. The position of patches 

with maxima and minima values for the study variables in the kriging maps changed between 

successive sampling dates illustrating the lack of temporal stability of the pattern of spatial 

distribution. Moreover, patterns of spatial variation clearly show disparities between the three 

dolomite treatments for a given sampling date. Kriging contour maps also show that there 

was no correspondence between patches with maximum or minimum values of Fe, Mn and 

Zn. So, in some cases it could be observed that areas with maximum Fe values show a trend 

to match those with minimum Mn values and vice versa.  

Dynamics of extractable Fe, Mn and Zn is considered to be complex and it is affected by 

numerous internal factors or soil properties such organic matter content, elemental 

composition or element speciation, pH and potential redox (Eh), etc, which determine a 

number of chemical reactions and over a rice field are far from homogeneous. On the other 

hand, although all the experimental units were managed similarly uneven water application 

due to inaccuracies of the flooding system and/or microrelief features could be also a source 

of spatial variability. Therefore, texture, soil mineral and organic composition, uneven 

flooding and microtopographic irregularities are possible factors influencing the variability in 

the studied soil properties 

The above results show that there is a great potential to apply site specific technologies and 

management strategies for rice production in the studied soil. Measurement and management 

of the small scale variability in rice fields raises both, challenges and opportunities for 

precision agriculture. Small scale variability requires more careful consideration regarding 

both determination of design parameters and data processing issues. Precision agriculture 

strategies should be further investigated, depending on the feasibility of controlling 

spatiotemporal variability. 

 

 
 

 

 

 
Figure 1. Examples of kriging maps for extractable Fe in the first sampling (left) and in the 

second sampling (right). 
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Thermal convection in the upper mantle is the driving force of the plate tectonics which 

causes the continental drift [4, 7, 9]. So, in recent years interest in the study of thermal 

convection with characteristics of the mantle increased [1, 8, 12]. Some of these 

characteristics  are depth-dependent viscosity or thermal conductivity or  temperature-

dependent thermal conductivity or viscosity [3, 5, 8, 13]. In Refs. [2, 8, 11]  large viscosity 

variations are considered. On this line, this work deals with convection in a fluid which is 

subject to large viscosity variations, by imposing on the equations of motion a strong 

dependence of the viscosity with temperature.   

 

Horizontal gradients are also present in mantle convection, as the heating in not 

homogeneous [6].  Therefore, we propose the study of a Rayleigh-Bénard problem with non 

uniform heating and temperature-dependent viscosity as a first approximation to mantle 

convection. The viscosity has an exponential dependence on temperature [8, 10] and the 

domain of the problem is a rectangular layer finite in the x-z plane and infinite in the y-

direction. A numerical linear stability analysis of the basic state solutions is performed and 

the results are compared with the constant viscosity and uniform heating case. It is found that 

horizontal temperature gradients are responsible of the three dimensional structure of the 

bifurcation solutions. This suggests that localizad self generated horizontal gradients may 

influence the mantle convection evolution. 
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The soil profile is a sequence of soil horizons. For classification purposes, at any level of 

taxonomy, soil surveyors usually first establish genetic horizons in the soil, and then make a 

conclusion about the taxonomic position of the soil. Laboratory analysis either confirms or 

disproves the field diagnostics, but soil division into horizons is the first step in soil mapping 

anyway. The depth of a particular soil horizon is often of major interest from a practical 

viewpoint. In many countries the depth of surface horizons is used as a diagnostic criterion in 

soil taxonomy at the species level, where classes such as “shallow”, “medium“, and “deep” 

are used to indicate the depth of the A or E horizons; the limits of these classes depend on the 

soil type. In other systems, the depth of horizons is used at the series level. Correct soil 

diagnostics at lower levels of taxonomy is an important task in soil survey.  

 

The depth of a particular soil horizon varies significantly in space, and often does not depend 

directly on easily observed external factors. This is evident from the data of the study of long 

transects, especially where continuous trenches are studied. Traditional statistical methods are 

not always effective for managing spatially distributed data, where the neighboring samples 

cannot be regarded as independent one from another. Thus, geostatistical methods are 

recommended for the study of the spatial structure of soils, and for spatial interpolation of 

data. The objective of this study was to study the spatial variation of the presence and depth 

of soil horizons in the forest. 

 

The study was made at the territory of the Karelia Republic, Northwest Russia. The study 

plot Gomselga was situated in the subzone of middle taiga. The study plot was established in 

hilly glacial and glaciofluvial landscapes with intensive tectonic discontinuities in pre-

Cambrian crystalline rocks. The territory of the plot used to be covered with spruce forests, 

which later were almost completely clearcut, and the territory grew occupied by secondary 

forests about 50 years old, where the dominant species were birch, aspen with admixture of 

pine and spruce. The soils of the plot are diverse: iron-humus podzols (Haplic Podzols), 

podburs (Entic Podzols), raw-humus burozems (Dystric Cambisols), high-moor peat soils 

(Dystric Histosols), mud gley soils (Histic Gleysols), and sod-gley-podzolic soils (Dystric 

Planosols).  

 

We studied spatial variability of various soil horizons, using the data of soil surveys of 16 

km2 plot. At each point we recorded the depth of O, A, E, and B horizons. We recorded data 

from more than 100 profiles. The spatial variability of the depth of soil horizons was 

estimated using variography. At first, experimental semivariograms were calculated, and 
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corresponding models were approximated using the least squares method. They quantified the 

distance (range), at which samples became uncorrelated from each other, and gave an idea of 

direction of the best and the worst spatial correlation. Then, using kriging and variograms as 

the basis, we generated maps of soil horizons depth.  

 

Kriging is the good local estimators in some sense. But it always generates a smoothed 

model. Thus, the model variability is much less than it is in reality. The study plot was 

characterized by high soil diversity, and there were many points where the thickness of 

horizons was equal to 0 (the horizon was absent). It would be reasonable to assign zero 

thickness values at the neighborhood. But the kriged estimation of grid point is a weighted 

average of all nearby samples. So the other observed values showing thicknesses >0 will have 

an influence that may be significant. 

 

The other problem is that the plot was characterized by the complexity of relief, the 

abundance of depressions occupied by lakes and peatlands, and the presence of bedrock 

outcrops, where the soil (and soil horizons) was absent. So it was impossible to predict the 

thickness of soil horizons there.  

 

We used indicator kriging to delineate the areas of the presence of horizons. Additional 

“virtual” points with zero values located in the coordinates of lakes, rock outcrops, and other 

non-soil bodies were added to the data obtained from sampling points. Then we used an 

additional indicator variable: 

 I(x, soil type) = 1, if z(x) = soil type 

   = 0, if z(x) = other soil type or non-soil body 

where  z(x) was the observed categorical realization at location x. Then we generated 

probability maps of the presence of soil horizons. Precise estimation of the distribution of soil 

horizons using indicator kriging enabled delineation of the zones, where the probability of the 

presence of horizons was higher than the probability of their absence.  

At the last stage we compared and combined two maps (one – the map of soil horizon 

thickness, another – the probability map of the presence of soil horizon). At every grid point, 

where a defined probability threshold (50% in our case) was not reached, the corresponding 

grid point containing the estimated thickness was set to zero. 

So, smoothing effects occurring around zero thickness investigation sites can be reduced with 

the help of a probability criterion.  

 

This study was supported by the Russian Foundation for Basic Research (project no. 09-04-

00027). 
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Introduction 
Soil cover plays a crucial role in determining and governing the quality of forest ecosystems. 

Potentially harmful factors, such as enhanced concentrations of pollutants, may negatively 

affect forest productivity and biological balance. From among various soil pollutants, heavy 

metals are of particular importance, as they may accumulate in soil and remain there for a 

long time. Some heavy metals, if present in low concentrations, may act as micronutrients, 

but in the high amounts they are always toxic to biota. This is why metal concentrations in 

soils should be examined, in particular in the most susceptible ecosystems, such as mountain 

forest exposed to severe climatic conditions. 

This study presents a differentiation of zinc and copper concentrations in soils in the area of  

Karkonosze National Park (The Giant Mts., SW Poland), which in the last decades of 20th 

century experienced a distressing processes of forest decline, obviously caused by many 

coinciding biotic and abiotic factors. Possible toxicity of heavy metals was listed as one of 

executive factors of forest damage. Therefore, a system of environmental monitoring, has 

been established in the Park. Soil monitoring is included as an integral part of environmental 

research. Soil examination within the system involves the analysis of basic soil properties, 

such as pH and organic matter content, and the concentrations of selected contaminants: 

sulphur and heavy metals, including  zinc and copper [Karczewska et al. 2006]. 

Total concentrations and distribution of heavy metals in soils depend on natural factors: 

parent rock composition, biological accumulation and the effects of soil forming processes, as 

well as on several external factors, such as input of air-borne pollutants and changing 

chemistry of dry and wet precipitation [Kabała 1998].  

The main aim of this study was to analyse spatial differentiation of copper and zinc 

concentrations in the surface layers of soils in the area of Giant Mts., as related to selected 

soil properties, topographic factors and other parameters. 

 

Material and methods 
The system of environmental monitoring in the Karkonosze National Park consists of 630 

sites in a forested zone, and 230 sites in subalpine zone, arranged in a 200x300 m grid 

[Karczewska et al. 2006]. This study was carried out in the forested zone, where soil samples 

were collected from 476 of 630 monitoring sites. Soil material was sampled with split-tube 

samplers from the surface soil layers, i.e. from the depths 0-10 cm and 10-20 cm. 
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Additionally, the samples of organic layer (a forest floor) were collected if only the forest 

floor was present in particular site.  

Soil samples were dried and homogenised prior to analyses. Laboratory analyses involved 

basic soil properties: grain size distribution, organic matter content (determined by 

oxidometric method) and soil reaction pHKCl (determined electrometrically in 1mol/dm3 KCl. 

Total concentrations of Cu and Zn were determined by AAS after microwave digestion of 

samples with “diverse” aqua regia  (concentrated HNO3 + HCl, 3+1).  

All statistical calculations were made using a software Statistica 8. The maps of spatial 

distribution of Zn and Cu in soils were created with a software MapInfo. Further 

geostatistical analyses will be made with a software Surfer.   

 

Results 
Concentrations of Zn in forest floor ranged from 23 to 111 mg/kg (with the mean value of 

46.7 mg/kg), whereas the concentrations of this element in the layers  0-10 cm and 10-20 cm 

varied in the ranges 10 – 124 mg/kg and 5.6-120 mg/kg, respectively (table 1). The mean 

values for those layers were lower than the mean in the forest floor: at the level of 33.1 and 

26.9 mg/kg. Standard deviation of  Zn concentrations were similar in all layers examined, i.e. 

15.41 mg/kg for forest floor and 15.32 and 16.09 mg/kg for the layers  0-10 cm and 10-20 

cm, respectively. Variability coefficient of Zn concentrations in forest floor (33.0%) was  

lower than that in the deeper soil layers (46.2% and 59.8 %).  

Concentrations of Cu in soils ranged from 1.3 to 85 mg/kg, and were the highest in the forest 

floor, and decreased together with the depth. In the deeper layers, Cu concentrations 

remained below 53.5 mg/kg. The mean values of Cu concentrations in the sequence of layers: 

forest floor, 0-10 cm and 10-20 cm, were: 20.85, 13.79, and 8.15 mg/kg. The values of 

standard deviation showed the same trends as that for Zn, described above (table 1). 

 

Table 1:. Statistical parameters characterizing variability of Cu and Zn concentrations in 

soils. 

Zn Cu 

Parameter Unit Forest 

floor 
0-10 cm 10-20 cm 

Forest 

floor 
0-10 cm 

10-20 

cm 

Minimum 23 10 5,6 6 2 1,3 

Maximum 111.5 124 120 85 53.5 48.5 

Mean 46.74 33.2 26.94 20.85 13.79 8.15 

Median 42.95 30 22.2 20 12.9 6.5 

Standard deviation 

mg/kg 

15.42 15.32 16.09 7.78 7.33 5.86 

Variability coefficient % 33.0 46.2 59.8 37.3 53.1 71.8 

No of samples - 280 459 452 279 459 453 
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Table 2: Correlation coefficients between the concentrations of Cu and Zn and site altitude 

and the parameters characterizing soil properties. The cases of significant correlations at 

p=0.05 are marked with asterisks. 

 Zn Cu 

 Forest 

floor 
0-10 cm 10-20 cm 

Forest 

floor 
0-10 cm 10-20 cm 

Altitude, m asl -0.029 -0.065 -0.120 0.060 0.169* 0.132* 

Organic matter, % 0.047 0.218* 0.195* 0.057 0.299* 0.139* 

Zn in forest floor, mg/kg x - - 0.160* - - 

Zn 0-10 cm - x - - 0.401* - 

Zn 0-10 cm - - x - - -0.006 

 

Correlation analysis based on determination of Pearson correlation coefficient, indicated that 

the concentrations of Zn and Cu in the layers  0-10 cm and 10-20 cm were linearly dependent  

on the content of organic matter in particular soil layer (table 2). Such relationships were 

described by other authors who examined the distribution of metals in mountain  soils 

[Donisa et al. 2000, Wang et al. 2009]. Positive correlation was also found between the 

concentrations of Zn and Cu in forest floor and their concentrations in the layer 0-10 cm 

(table 2). 

Statistical analysis did not prove any simple correlations between the site altitude and total 

concentrations of copper and zinc in soils (table 2). High values of standard deviation, 

described above, confirm that there are some other factors, beside those examined previously, 

that determine the concentrations of Zn and Cu in the surface layers of forest soils in the area 

of the Karkonosze National Park. The example of spatial distribution of Cu in forest litter is  

shown in the map (figure 1). Further analysis will be needed to closer examine the spatial 

variability of Zn and Cu concentrations in soils and to identify the main factors governing the 

distribution of Zn and Cu in the soils examined. Geostatistical approach will be helpful in that 

analysis. 

Figure. 1. Spatial distribution of Cu concentrations in the forest litter in the Karkonosze NP 
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Abstract: 
This study was carried out in research forest at northern part of Iran. In the present study, a 

spatial estimation theory known as geostatistics was applied by variogram and Kriging 

interpolation for the analysis of soil carbon and nitrogen in a pure beech forest. Soil organic 

matter is a key component of any terrestrial ecosystem, and any variation in its amount and 

composition has important effects on many of the processes that occur within the system. The 

consequences of a doubling of the global atmospheric CO2 concentration may be seen in 

different ranges of the spatial scale. Investigations of heterogeneity in natural systems have 

indicated substantial variability, even at scales of less than one meter. In fact, the values of a 

variable at sites that are close together are more similar than those further apart. In this study, 

126 rectangular squire plots have been chosen systematically for soil analysis. The spatial 

analysis of the carbon percentage indicated a well defined structure of the variogram for 

organic and top-mineral soil depths. The soil nitrogen showed also a similar pattern as found 

for carbon in relation to the depth variable. The ordinary kriging interpolation showed that 

the carbon accumulation in top-mineral soil depth in beech forest was estimated to be 124.5 

ton ha-1, while in the organic layer was calculated to be only 0.54 ton ha-1. An increase of the 

rate of nitrogen storage in the mineral layers in beech forest created a favorable soil 

conditions for rich vegetation species. The impact of tree species and soil characteristics was 

the most important factors influencing the spatial variability of carbon and nitrogen storage in 

the forest floor and mineral soil layers. This research indicated that the spatial dependence 

between carbon and nitrogen could be presented a sampling strategy for soil study in natural 

forests and silviculture closed to the nature for sustainable forest management.  

 

Introduction: 
Forest ecosystems represent an important carbon pool and have functioned as a net source of 

CO2 in recent history (Burchel & Kursten, 1992). Soil organic matter is a key component of 

any terrestrial ecosystem (Evens et.,al, 2006). The loss of organic matter from soils following 

disturbance is an important source of CO2 for the atmosphere. The consequences of a 

doubling of the global atmospheric CO2 concentration may be seen in different ranges of the 

spatial scale (Gaten, et al., 2007). Investigations of heterogeneity in natural systems have 

indicated substantial variability, even at scales of less than one meter. In fact, the values of a 

variable at sites that are close together are more similar than those further apart. In the present 

study, a spatial estimation theory known as geostatistics was applied by variogram and 
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Kriging interpolation for the analysis of soil nitrogen and carbon in beech forest in north of 

Iran..  

 
 

Figure 1: Sampling plan of research area for soil carbon and nitrogen analysis  

 
 

Figure 2: Correlation between Nitrogen percentage and C/N (mineralization ratio) in 

organic layers (LFH) in beech forest 
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Figure 3: Correlation between carbon and nitrogen percentage in top mineral soil depth in 

beech forest 

 
Figure 4: Experimental variogram (ponts) and exponential fitted model (line) of the nitrogen 

percentage in the organic soil depth (LFH) at beech forest  
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