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2 (0 WELCOME TO GEOENV2010 !

On behalf of the geoENV2010 Organising Committee and the geoENVIA patronising
organisation we are pleased to welcome you at the 8th International Conference on Geostatistics
for Environmental Applications in Gent, Belgium.

GeoENV conferences have been held biennially at venues across Europe. From the first
conference in Lisbon in 1996, the event has been in Valencia (1998), Avignon (2000), Barcelona
(2002), Neuchatel (2004), Rhodes (2006) and Southampton (2008). It has become a leading
forum for Scientists across a broad range of disciplines to share their experiences on the
application of geostatistics to environmental problems.

This book contains the extended abstracts of the oral and poster contributions to the
geoENV2010 conference. They have been selected, but not edited, by the organising committee.
So the presented abstracts are included as they have been submitted by the authors. Papers are
included in the order in which they appear in the programme.

In the past, each geoENV conference produced a book of full papers, creating a prestigious and
authorative series of geostatistical literature. In this conference it was decided to bundle the full
papers after review in a special issue of an international journal. The choice fell on the Springer
journal Stochastic Environmental Research and Risk Assessment (SERRA). Authors who have
presented their work at the conference are invited to submit a paper to the geoENV2010
organising committee who will then proceed with the reviewing process and make
recommendations to the editor of SERRA. Every participant of geoENV2010 will receive a copy
of this special issue.

Other differences with previous geoENV conferences are the omission of parallel sessions which
is possible because we reduced the time per contribution. In this way all participants can attend
all talks, but talks will have to be more concise. Ample time is foreseen for a poster session with
poster authors presenting their work in front of a group of delegates.

Many persons, mainly from the research group Soil Spatial Inventory Techniques of the
Department of Soil Management of the Faculty of Bio-Science Engineering, UGent, have
contributed to the organisation of this conference. One person in particular, Dr. Liesbet Cockx, is
thanked for taking most of the load on her shoulders and for preparing this book of abstracts.

We hope that this issue in the series of geoENV conferences will be equally fruitful and
rewarding to its participants and the readers of this book and the special issue of SERRA.

Marc Van Meirvenne, Patrick Bogaert and Dimitri D’Or
Chair of the Organising Committee of GeoENV2010
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Monday 13 September 2010

mﬂ ™ International Conference on Geostatistics for Environmental Applications

PROGRAMME

8h-9h Registration at the Faculty of Bioscience Engineering, Building E
%h Conference opening by geoENVia President Ph. Renard
Chair: P. Goovaerts
9h15 Keynote I: Spatial modeling with ensembles in metric p-1
C. Scheidt & J. Caers space
Session 1: Theory I p. 4
10h G. Mariethoz, P. Renard, = The directed sampling method to perform multivariate multiple-
J. Straubhaar point geostatistical simulations
10h15 A. Boucher, G. Phelps, Simulating complex 3D alluvial stratigraphy by combining
C. Cronkite-Ratcliff training-image-based algorithms and vertical variograms
10h30 J. Strauhbaar, Ph. Renard, List-based algorithm for multiple-point statistics simulation
G. Mariethoz,
R. Froidevaux, O. Besson
10h45 Coffee break
Chair: J. Boisvert
Session 2: Theory II p. 13
11h05 R. Labourdette, Multiplepoint statistics with auxiliary properties applied to
T. Chugunova sustainable development. Example from urban expansion
prediction of Pau agglomeration (France)
11h20 M. Huysmans, Direct multiple-point geostatistical simulation of edge properties
A. Dassargues for modeling thin irregularly-shaped surfaces
11h35 C. Scheidt, J. Caers, Rapid construction of ensembles of high-resolution models
Y. Chen, L.J. Durlofsky  constrained to dynamic data
11h50 A. Parra, J.M. Ortiz Conditional multiple point simulation with texture synthesis
12h05 R. Tolosana-Delgado, Classifying wave forecasts with model-based geostatistics and

J.J. Egozcue, A. Sanchez-
Arcilla, J. Gomez

the Aitchison distribution

12h20

Lunch
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Chair: D. D" Or

Session 3: Soil

p. 28

13h30 E. Meerschman, M. Van  Application of multiple point geostatistics in soil science: the

Meirvenne reconstruction of polygonal networks of ice-wedge
pseudomorphs

13h45 G.M. Siqueira, J.Dafonte ~ Spatial correlation between weeds and soil apparent electrical
Dafonte, J. Paz-Ferreiro conductivity measured using electromagnetic induction

14h M. Robinson, The improvement of peat depth models for Northern Ireland
J. McKinley, A. Ruffell,  through the investigation of Tellus data
M. Young

14h15 J. Van de Wauw, Screening the Flemish (Belgian) soil drainage class map for its
P.A. Finke currency

14h30 R. Kerry, B. Rawlkins, Area-to-point kriging of soil texture: an efficient use of legacy
P. Goovaerts soil data from polygon maps

14h45 Poster session: Tour of posters, 5 min per poster p. 165
Chairs: Ph. Renard & J. McKinley

16h20 Coffee break
Chair: A. Boucher
Session 4: Geology p. 47

16h40 L. Foresti, V. Demyanov, Multiple kernel models for reservoir characterization
M. Christie, M. Kanevski

16h55 S. Bhowmik, Tracking CO, plume migration during geologic sequestration
C.A. Mantilla, using a probabilistic history matching approach
S. Srinivasan

17h05 J. McKinley, A.Ruffell, Determining local spatial variability from a regional airborne
M.Young radiometric survey

17h20 P. Tr. Simard, E. Wavelet-based porosity simulation using high resolution
Gloaguen, D. Marcotte, analogue model and low-resolution tomographic data
A. Boucher

18h30 Evening activity: Guided tour through the historical centre of Ghent Meeting

point: St-Baafsplein at the fountain

il
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Chair: P. Bogaert

8h45 Keynote I1: Spatiotemporal geostatistics and the p- 59
G. Christakos environment: crossing Parmenides' gates
and Morrison’s doors
Session 1: Hydrology I p. 62
9h30 D. Pedretti, Spatial assessment of infiltration capacity of soils for artificial
M. Barahona-Palomo, recharge practices using Google Earth images
D. Bolster,
D. Fernandez-Garcia,
X. Sanchez-Vila
9h45 L. Li, H. Zhou, Transport upscaling using multi-rate mass transfer in three-
J.J. Gomez-Hernandez dimensional highly heterogeneous porous media
10h R.L. Manzione, Stochastic simulation of time series models combined with
E. Wendland, universal kriging: a framework to predict risks of water table depths
M.Knotters in time and space
10h15 H. Zhou , J.J. Gbmez- Performance of modified ensemble Kalman filter in non-Gaussian
Hernandez, L. Li heterogencous media
10h30 E. Savelyeva, S. Utkin  Stochastic modeling for liquid radioactive storage reservoir
10h45 Coffee break
Chair: A. Bardossy
Session 2: Hydrology 11 p. 77
11h05 B. Bourgine, Characterization of nitrate long term trends at regional scale using
B. Lopez, N. Baran, statistical and geostatistical tools. Example of the Loire Brittany
D. Ratehau basin
11h20 C. Cronkite-Ratcliff, Contribution of geological heterogeneity characterization to
G. Phelps, A. Boucher uncertainty in predicting unsaturated zone flow
11h35 C. P. Haslauer,
P. Guthke, Effects of non-gaussian spatial dependence of hydraulic
A. Bardossy, conductivity on hydrodynamic macrodispersion
E.A. Sudicky
11h50 L. Li, H. Zhou, A comparative study of three-dimensional hydraulic conductivity

J.J. Gomez-Hernandez

upscaling at the macrodispersion experiment (made) site, on
Colombus Air Force Base in Mississipi
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Session 2: Hydrology II (continued)

12h05 B. Rogiers, D. Geostatistical analysis of primary and secondary data in a sandy
Mallants, O. Batelaan  aquifer at Mol/Dessel, Belgium
M. Gedeon,
M. Huysmans,
A. Dassargues
12h20 N. Jeannée, Improved mapping of daily precipitation over Quebec using the
D. Tapsoba moving-geostatistics approach
12h35 Group photo geoENV10
13h Lunch
Chair: M. Huysmans
Session 3: Pollution I p. 98
14h H. Kazianka, J.Pilz Objective bayesian analysis for the correlation parameters in
gaussian copula-based spatial models
14h15 D. D'Or, D. Allard, Incorporating non stationarity in categorical variables simulations
R. Froidevaux with MCS
14h30 P. Harris, Visualisation techniques for moving window kriging
C. Brunsdon,
M. Charlton
14h45 A. Gribov, Local polynomials for data detrending and interpolation in the
K. Krivoruchko presence of barriers
15h G. Mariethoz, Multi-way sensitivity analysis using clustering techniques
J. Caers, C. Scheidt
15h15 M. Kanevski, Pattern recognition in environmental data using general regression
V. Timonin, neural networks
S. Robert, L. Foresti
15h30 J.B. Boisvert Modelling locally varying anisotropy of CO, emissions
C.V. Deutch
15h45 Coffee break
Chair: M. Kanevski
Session 4: Pollution I1 p. 122
16h15 K. Hennebohl, Efficient parametric variogram estimation for real-time
E.R. Pebesma, interpolation of environmental monitoring data
W.G. Miiller
16h30 A. Govaerts, Automatic semivariogram modeling by weighted least squares and
A. Vervoort by cross-validation
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Session 4: Pollution II (continued)

16h45 P. Bossew Probalistic spatial prediction of indoor Rn from soil air
concentration

17h Y. Desnoyers, Geostatistics for radiological evaluation: methodological
J.-P. Chilés, D. Dubot, developments and outcomes
N. Jeannée,
J.-M. Idasiak

17h15 E. Dons, C. Beckx, Shop opening hours and population exposure to NO, assessed with
Th. Arentze, G. Wets, an activity-based transportation model
L. Int Panis

17h30 General Assembly

19h15 Conference Dinner Het Pand — Onderbergen - Gent
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Chair: R. Froidevaux

%h Keynote I1I: Geostatistical interpolation using copulas p- 137
A. Bardossy
Session 1: Pollution 111 p. 140
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temporal modelling of individual exposure to air pollution
10h D.P. Robinson, C.D. Applying an exhaustive secondary dataset for geostatistical
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10h15 A. Kolovos, A. Skupin, Spatiotemporal geostatistics in cross-methodological monitoring
W. Pang, G. Christakos, of air pollution
M. Jerrett
10h30 U. Leopold, L. Drouet, Accounting for spatio-temporal uncertainty associated to
D.S. Zachary emission allocation in an energy-air quality assessment model
10h45 Coffee break
Chair: I. Clark
Session 2: Health p. 151
11h05 P. Goovaerts Merging areal and point data in geostatistical interpolation:
applications to soil science and medical geography
11h20 L.B. Nucci,. Distribution of overweight and identification of spatial risk
A.C.C.N. Mafra, C.
Stephan, L.T.O.
Zangirolani, R. Cordeiro
11h35 N.A. Samat, D.F. Percy Relative risk estimation of Dengue disease mapping based on
discrete time-space stochastic Sir-Si models for disease
transmission with tract-count data
11h50 i'—é%% fra LB Spatial risk distribution of work related accidents in southeast
.C.C.N. Mafra, L.B. s . .
Nucei, R, Cordeiro Brazilian city under a multinomial approach.
12h05 Y. Yano, U. Mueller, Generalised linear modelling of the asthma hospitalisation risk
A. Hinwood and air pollutant concentration in Perth
12h20 Closing
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SPATIAL MODELING WITH ENSEMBLES IN METRIC SPACE

C. Scheidt and J. Caers
Stanford University

State-of-the-art

The construction of earth models using geostatistical estimation and simulation methods is now
routinely applied in areas such as reservoir modeling, aquifer modeling or mineral deposit
estimation. These models can be constrained to a variety of data (seismic data, dynamic data,
well logs, etc.). Due to the sophistication of modern geomodeling software, very complex Earth
models containing complex surfaces describing layering and faults, reservoir structure, spatial
variation of petrophysical properties, etc., can be constructed in a relatively straightforward
manner. Increasing complexity, however desirable for accurate modeling, results in potentially
hundreds to millions of different model parameters to describe the earth phenomenon of interest.
The complexity and high-dimensionality of these models necessitate the construction of multiple
model realizations (ensembles) to perform properly a study.

On the other hand, the goal of modeling studies is rarely the construction of the models
themselves, but rather to respond to often basic engineering questions - do we clean-up or not, do
we drill, what are oil and gas reserves, should we obtain more data, etc. In these and many other
applications, the question to be answered is much less complex than the Earth models that are
constructed. Our task then is to analyze multiple, complex, high-dimensional Earth models to
answer often very simple questions. Analyzing ensembles of Earth models requires a response
evaluation for each model in the ensemble (Monte-Carlo approach). This is generally infeasible,
mostly due to the large number of uncertain parameters involved in Earth modeling. This is
especially the case when the response function is CPU demanding, for example in cases where
finite element or finite difference solutions are required (multiphase flow simulations, climate
models).

What is missing in the modeling process is a link between the construction of the Earth models
and the purpose of the study. Currently, models are considered simply as input to a transfer
function, and are built with little regard to the type of response or decision variable considered.
This no doubt has an impact on the efficiency and effectiveness of the studies we undertake.

Metric space

To overcome the disconnection between large-scale, 3D spatial Earth modeling and the actual
purpose for which these models are constructed, we propose to introduce a metric space. This
metric space is defined using a dissimilarity distance function between models. The distance is
tailored to the application at hand - it should be chosen such that it correlates with the difference
in response of interest between any two models. The dissimilarity distance function therefore
relates the modeling process to the purpose of the modeling, and provides the key missing link



between model uncertainty, and uncertainty in the model responses (oil recovery, climate
change, ground water recharge efficiency). If this distance is chosen with respect to the purpose
of the modeling effort, then we can show how large complexity and dimensionality in Earth
models can be significantly reduced in the metric space defined by this distance (Figure 1).
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Figure 1: Schematic diagram of modeling process and link with fit-for-purpose modeling using
metric spaces.

In this presentation, we will show that many of the current Cartesian-based modeling problems
and methodologies, such as inverse modeling, model selection and screening, model updating
and response uncertainty evaluation can be redefined in metric space. We demonstrate how such
a redefinition greatly simplifies as well as increases effectiveness and efficiency of any modeling
effort, particularly those that require addressing the matter of model and response uncertainty.

In particular, we will illustrate that such distance allows to:

1. Map complex high-dimensional models (model space) into a lower dimensional metric
space (response-dependant) using a statistical tool called multi-dimensional scaling
(MDS).

2. Incorporate the purpose of the application into the modeling effort.

3. Focus on the ensemble of earth models and not on one model at a time

We will lay out the basic theory behind modeling with ensemble of models in metric space. We
will illustrate the simplicity and power of this novel theory by various practical applications on
large dataset, including:



1. How to assess response uncertainty when the forward model is CPU demanding. Model
selection can be done efficiently in the metric space in order to identify a few
representative models for which response evaluation is performed.

2. How an ensemble of models can be parameterized with a few standard Gaussian
variables through a distance-based Karhuenen-Loeve expansion (KLE). Such
parameterization is response-dependant and therefore can be useful in solving
optimization problems under uncertainty.

3. How an ensemble of models can be updated by using a modified version of the Ensemble
Kalman Filtering technique in the metric space.

4. How a multi-resolution framework can be employed within distance-based techniques to
circumvent CPU-intensive transfer functions. Distances can be computed from
coarsened models while constructing equivalent fine-scale models.

These applications are possible whenever an effective distance between models can be
determined. Indeed, we expect many more applications to come to light in this new, rich field
of modeling of ensembles in metric space.



THE DIRECT SAMPLING METHOD TO PERFORM MULTIVARIATE MULTIPLE-
POINTS GEOSTATISTICAL SIMULATIONS

G. Mariethozl’z, P. Renardl, J. Straubhaar'

!Centre for Hydrogeology, University of Neuchatel, 11 Rue Emile Argand, CP 158, CH-2000
Neuchatel, Switzerland, E-mail: gregoire.mariethoz@minds.ch
*Stanford University, ERE Department, 367 Panama st, rm 65, Stanford, CA 94305, USA.

Recent advances in the domain of geostatistical simulations include multiple-points simulation
methods (MPS), which infer spatial structures from conceptual example images, namely training
images. Their main advantage is to allow using high-order spatial statistics (as opposed to
traditional two-point statistics), that can represent a wide range of spatially structured, low
entropy phenomena.

We present a novel MPS algorithm, named direct sampling (DS), which is drastically simplified
compared to previous approaches and has more possibilities (Mariethoz and Renard, in press;
Mariethoz, et al., submitted). It produces conditional realizations honoring the high-order
statistics of uni- or multivariate training images. In addition to having virtually no RAM
requirement, the method is straightforward to parallelize (Mariethoz, in press). Hence it is
computationally efficient and can produce very large and complex realizations.

With the traditional MPS approaches (e.g. Strebelle, 2002; Zhang, et al., 2006; Straubhaar, et al.,
2008), the training image is usually scanned and all pixels configurations of a certain size (the
template size) are stored in a catalogue of data events having a tree or a list structure. This
structure is then used to compute the conditional probabilities at each simulated node. Since the
memory load increases dramatically with the size of the template and the number of facies, the
use of MPS is generally restricted to relatively small problems with limited structural
complexity. Moreover, the template is often not large enough to capture large-scale structures,
and multi-grids have been introduced to palliate this problem by simulating the large-scale
structures first, and later the small-scale features. Limited memory usage restricts the approach to
the simulation of univariate fields.

The DS algorithm takes a different approach. Instead of counting and storing the configurations
found in the training image, it directly samples the training image for a given data event. The
method is based on a sampling method introduced by Shannon (1948), strictly equivalent to the
original MPS algorithm of Guardiano and Srivastava (1993), but that does not explicitly need to
compute conditional probabilities and therefore does not need to store them. Starting from an
initial randomly located point, the training image is scanned. For each of the successive samples,
the distance between the data event observed in the simulation and the one sampled from the
training image is calculated. If the distance is lower than a given threshold, the sampling process
is stopped and the value at the central node of the data event in the training image is directly used



for the simulation. Since nothing is stored, neighborhoods can have virtually any size and are not
restricted to a template, making the use of multiple-grids unnecessary. In fact, multiple-grids are
replaced by a continuous variation in the size of data events during the simulation process. This
reduces artifacts and leads to a simpler implementation.

Similarly to other methods, DS can reproduce the structures of complex training images and deal
with a wide range of non-stationary problems. Additionally, it can simulate both discrete and
continuous variables by choosing specific distances between data events, and can deal with
specific cases of non-stationarity. But the richest feature of DS is that multivariate data
configurations can be considered, allowing to generate realizations presenting a given
multivariate multiple-point dependence. The ability to treat multiple variables simultaneously in
a multiple-point framework allows co-simulation without formulating the dependency between
the simulated attributes. Instead, the multiple-point dependence is reproduced as it is in the

multivariate training image.
Bivariate Training Image Bivariate Simulation

An example is shown in figure 1. The left images represent a bivariate training image consisting
of the photograph of an outcrop and a georadar image taken at the same location (Bayer,
unpublished). The dependence between both variables is shown by the double-headed arrow.
One bivariate realization is displayed on the right. Note that the top right image is not an actual
photograph, but a simulation of what the photograph could be. Similarly, the bottom right image
is a simulation of a georadar image. The dependence between variables is preserved (double-
headed arrow), since the simulated photograph of the outcrop presents interfaces at locations that
are coherent with the interfaces in the simulated georadar image.
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SIMULATING COMPLEX 3D ALLUVIAL STRATIGRAPHY BY COMBINING
TRAINING- IMAGE-BASED ALGORITHMS AND VERTICAL VARIOGRAMS

A. Boucher', G.Phelps?, C. Cronkite-Ratcliff’

1Dept of Environmental Earth System Science, Stanford University, CA, USA,
aboucher@stanford.edu
US. Geological Survey 345 Middlefield Road, MS 989 Menlo Park, CA,
3Dept of Geological and Environmental Sciences, Stanford University, CA, USA,

Alluvial and volcanic basin deposits, prevalent throughout the southwestern United States, can
be important groundwater repositories, and the deposit stratigraphy significantly affects
groundwater storage, recharge and withdrawal. Mapping alluvial deposits in the subsurface is
central to quantifying the availability and modeling the use of this critical resource. However,
alluvial units observed at the surface are difficult to model within the subsurface because of their
complex sedimentological structure. New tools are needed to map alluvium in the subsurface in
order to improve models of soil moisture and groundwater recharge, flow, and transport, which
in turn improve the understanding of available water resources.

Training image-based algorithms have been shown to offer great potential to both map and
characterize the uncertainty associated with mapping subsurface contacts with complex
connectivity. However, finding suitable 3D training images remains one of the main challenges
for training image-based algorithms such as the SNESIM algorithm (Strebelle, 2002).
Information for mapping 3D alluvial units is often available only in 2D or 1D, and creating
explicit 3D training images may not be feasible or desirable. Moreover, training image
requirements for standard simulation algorithms are restrictive (no trends or location specific
features); consequently, images of natural systems are abandoned in favor of simplistic training
images often generated by Boolean techniques. Furthermore, natural sedimentation processes
and rates are known to change over time, creating sedimentological pattern trends within a basin
that are not captured by simple vertically varying facies proportions.

These issues are addressed by using widely available geological maps as training images and a
structured simulation path to mimic the sedimentary environments through time and space.
Nonstationary 3D geomorphic patterns are simulated by coupling several 2D geological maps
with experimental 1D vertical variograms; the geological maps are selected to model changes in
sedimentation regime over time. These methods are demonstrated in Yucca Flat, Nevada, a
nuclear test site where radionuclide migration is a concern for groundwater north of the Las
Vegas, NV metropolitan area.

Two different training images, selected to represent different depositional regimes, are used as to
mimic the length, sinuosity, and adjacency of geologic unit deposition that has occurred in Yucca
Flat since the Pliocene. The first training image is the USGS quaternary geologic map of Yucca



Flat basin (Slate and others, 2000). It identifies patterns occurring in a hydrological regime
where the sedimentation rate is low, as it is today (Figure 1 left). The second training image
(Figure 1 right; D.M. Miller, USGS, written communication), close to Valjean, CA, in the Death
Valley regional basin south of Yucca Flat, models a hydrological regime with an inferred higher
sedimentation rate. Both training images are derived directly from observed geologic
environments and therefore preserve the natural geologic shape, continuity, and stratigraphic
relations. These complex training images are decomposed with the search tree partitioning
approach (Boucher, 2008), where topographic variables, such as gradient, distance to source, and
elevation from source, serve as a proxy for the sedimentary processes.
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Figure 1: Training image from the (Left) surface geology of the Yucca Flat (25km x 35 km) and
(Right) the Valjean area in the Death Valley Basin (21.4km x 17.3km).

Simulations are performed layer-by-layer, starting at depth and moving upwards. Each 2D layer
is simulated by applying one of the two training images, using the search-tree partitioning
method. For each layer a stochastic process determines the sedimentation rate by using one of the
two training images. Contact boundaries are modeled vertically using indicator variograms
inferred from borehole data and horizontally from a 2D training image. Future improvements to
the method could seek to include conditioning the depositional rate to paleoclimate data.

The resulting 3D realizations (Figure 2) (a) are conditioned to borehole data, (b) visually appear
to reproduce sedimentary structures, and (c) include variable sedimentation rates through time.
The reproduction of the vertical variograms for the three most important sedimentary units is
shown in Figure 3; the reproductions are good, but tend to under-estimate the short-scale,
withinunit continuity.



Figure 2: Four simulations of the Yucca Flat: Dimension 20km by 12 km by 800 meters. See
Figure 1 for the legend
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Figure 3: Vertical variogram reproduction; (LEFT) Quaternary and Tertiary, (MIDDLE)
Pleistocene; (RIGHT) Holocene
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1 Introduction

Flow and transport processes are highly sensitive to the shape of the structures and their connectivity
(Journel and Zhang 2006; Renard 2007). Hence, modeling realistic heterogeneous geological reservoirs is a
crucial issue. Multiple—point statistics is a flexible technique for simulating categorical variables, allowing
to generate complex geological structures provided by the user via a training image (TI) (Guardiano and
Strivastava 1993). In classical implementations, the multiple-point statistics inferred from the training
image are stored in a search tree (Strebelle 2002). This provides a fast but very RAM demanding
algorithm. Indeed, in particular for 3D cases, the search templates used for retrieving the statistics
have to be small enough, because of the RAM limitation. Complex structures are then not properly
reproduced, despite the use of multigrids (Tran 1994) for capturing large structures within the TT while
keeping a search template of small size.

In this paper, we propose to replace the tree by a list. This new implementation presents several
advantages. First, the list structure requires much less RAM than the tree structure, and the search
templates can be chosen large enough to reproduce the complex structures within the TI properly.
Furthermore, since the memory burden is low, all the lists required by a simulation can be stored
simultaneously. In addition, a method inspired from Chugunova and Hu (2008) for handling non—
stationary TT can be developped easily; in this case, we use a continuous auxiliary variable for describing
the non—stationarity and extended lists taking into account for this secondary variable (Straubhaar et al.
2009). Finally, the list-based algorithm is straightforwardly parallelizable and hence also efficient in
terms of CPU time.
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2 Using lists for multiple—point statistics simulation

Here, we defined the list for a given TT having M facies numbered from 0 to M — 1 (categorical variable
s), and a given search template defined by its lag vectors, hyq,..., hy. In this situation, an element of
the list is a pair of vectors (d,c) where d = (s1,...,sn) defines a data event and ¢ = (cg,...,cpr—1)
is a list of occurrence counters for each facies. The number ¢; is the number of replicates of the data
events d found in the TT with facies i at the central node, i.e. the number of nodes v in the TT satisfying
s(v+h1) =s1,...,8(v+ hy) = sy and s(v) = i. Note that an additional virtual facies, e.g. —1, can
be used for considering data event partially informed provided by nodes near the border of the TI. Such
a list allows to compute the conditional probability distibution function (cpdf) needed for simulating a

node u in the simulation grid and given by

and s(v) = k}

P(s(u) =k | d(u)) ZL]- <m}

7#{U€TI:s(v—i—hij):s(u—i—hij),lgjg )
= : 7

#{UETI : s(v+hij):s(u+hij),

where uw 4+ h;,,...,u+h
simply computed by retrieving the counters of the compatible elements in the list.

are the informed (simulated) nodes in the neighborhood of w. This cpdf is

Tm

3 RAM requirements

Only the complete data events found in the TI, corresponding to the leaves of the classical search tree,
are stored in the list. In the case where M facies are present and a search template of size N is used,
the classical search tree is a M—ary tree with N levels, then the reduction of RAM usage allowed by the
list storage can be significative. For illustrating that purpose, we consider search templates of increasing
size containing the N closest nodes to the central node, and we retrieve the size of the corresponding
search trees and lists in gigabytes. The results are shown for two 3D TI in figure la and 1b, and the
ratios between the size of the tree and the size of the list for these two cases are drawn on figure 1c. We
rapidly observe a factor of 10 and more for the size of the tree in comparison with the size of the list.

a) RAM usage b) RAM usage c¢) Gain factor
5 - 25
i — list K — list
--- tree 8+ | --- tree
4+ ! | 20 4
' 1
[ H
34 K ' E
m ' Q i 157 N
[0} H O 4 ' :

24 ! ?

. ' 10 ;

. I :
14 1 24

: !
/
0 01 N case b
T T T T T T T T T T T T T T T
0 500 1000 1500 2000 0 50 100 150 200 20 40 60 80 100
search template size search template size search template size

Figure 1: a) RAM usage for a 3D training image having 600’000 nodes and 4 facies; b) RAM
usage for a 3D training image having 14'128'385 nodes and 6 facies; ¢) Gain factor with the
list in comparison with the search tree (ratio: size of tree over size of list).

Illustrative example. We consider here a simple example using the well-known TT of Strebelle chan-
nels, 3 multigrids and 116 zones for rotations and dilatations (figure 2). The simulation requires 348
lists, one per zone and multigrid. Since the list structure is parsimonious, all of them can be stored

simultaneously.
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Figure 2: Multiple-zones simulation: a) Training image (Strebelle 2002) (250 x 250); b) Zones
map (1’000 x 1’000, 116 zones) for the simulation grid, defining orientation and dilatation:
orientations go from 0° to 360° in each circle and dilatation from a factor of 1 to 0.4, from the
centre to the borders; ¢) one simulation (1’000 x 1’000).

4 Parallelization and CPU performances

We show in this section how a list-based multiple-point statistics algorithm can be parallelized on
shared or distributed memory machines (using OpenMP or MPI technology). Assume that p processors
are available. In this case, each list required by the simulation is divided in p parts of balanced size and
each one of theses p partial lists is stored in the memory associated to a single processor. Then, the
simulation of each node in the simulation grid is parallelized as follows. For computing the cpdf (1), each
processor retrieves the needed information (counters) by scanning its own local list. The information
retrieved by all processors is then merged (using a parallel computing communication), and the cpdf is
computed. The simulated facies is then drawn from this cpdf, and the simulation grid is updated on all
processors (communication). The resulting parallel list—based algorithm presents good performances in
terms of CPU ressources: it approximatively spends the same amount of CPU time with two processors

as a serial algorithm using search trees (Straubhaar et al. 2009).
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In industrialized countries, the current pattern of urban development is increasingly taking the
form of low-density, decentralized residential and commercial development. This form of
development, the environmental and quality-of-life impacts of which are becoming central to
debates over land use and land cover in urban and suburban areas is now commonly known as
“sprawl” (Oguz et al. 2007). Many classic symptoms are loss and fragmentation of the natural
resource, declining water quality and traffic congestion (Burchell et al. 1998). Land cover is an
important element of ecological function (Wicklam et al., 2002). While urbanization has
occurred, natural resource lands, such as forest, wetlands and agriculture, have been replaced by
land uses with more impervious surfaces. Predicting future environmental consequences requires
being able to predict the spatial pattern of land use change.

An emerging branch of geocomputing involves the modelling of spatial processes. A variety of
techniques are being used, the most important being traditional cellular automata. Most of these
models tempt to capture the evolving nature of real cities and region, but the most pressing
concerns evaluation of their results and they cannot be strictly predictive.

As in numerous agglomerations, Pau is typically organised following fractal organisations. This
organisation requires neighbourhood interaction but also long-distance spatial interactions to be
simulated. Multipoint statistic algorithms are now sufficiently elaborated to simulate complex
features such as these fractal organisations.

Our case study focuses on multipoint statistics application for urban expansion prediction.
Multipoint statistics classically use training images in stationary mode. By integrating auxiliary
properties, training images can evolve to a non-stationary state (Chugunova, 2008). This allows
integrating various properties to guide multipoint simulations. The multi-realisation scheme
associated with classical